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Abstract

The Lax-Wendroff (LW) method is a single stage method for evolving time dependent
solutions governed by partial differential equations, in contrast to Runge-Kutta (RK)
methods that need multiple stages per time step. We develop a Lax-Wendroff Flux
Reconstruction (LWFR) method in combination with a Jacobian-free Lax-Wendroff
procedure that is applicable to general hyperbolic conservation laws. The numerical
flux is carefully constructed - a D2 dissipation scheme is introduced improving CFL
numbers and EA scheme which improves accuracy for nonlinear problems.

A subcell based limiter is developed by blending LWFR with a lower order scheme,
either first order finite volume or MUSCL-Hancock scheme. While blending with a
lower order scheme suppresses spurious oscillations, it may not guarantee admissibility
of the discrete solution, e.g., positivity property of quantities like density and pressure.
By exploiting the subcell structure and admissibility of lower order schemes, we devise
a strategy to ensure that the blended scheme is admissibility preserving for the mean
values and then use a scaling limiter to obtain admissibility at all solution points. For
MUSCL-Hancock scheme on non-cell-centered subcells, we develop a slope limiter, time
step restrictions, and suitable blending of higher order fluxes that ensures admissibility
of lower order updates and hence that of the cell averages. By using the MUSCL-
Hancock scheme on subcells and Gauss-Legendre points in flux reconstruction, we
improve small-scale resolution compared to the subcell-based RKDG blending scheme
with first order finite volume method and Gauss-Legendre-Lobatto points.

We propose a generalized admissibility framework by performing a cell average
decomposition of LWFR. By performing a flux limiting of the time averaged numerical
flux, the decomposition is used to obtain an admissibility preserving LWFR scheme.
The admissibility preservation framework is further extended to conservation laws with
source terms.

Multiderivative Runge-Kutta (MDRK) methods generalize LW and RK as they use
multiple stages and LW procedure on each stage. We extend the fourth order, two stage
MDRK scheme to FR by writing both of the stages in terms of a time averaged flux
and then use the approximate Lax-Wendroff procedure. The developments made for
LWFR apply to MDRK by using them at each stage. Thus, accuracy and stability are
improved by EA scheme and D2 dissipation respectively. An admissibility preserving
blending scheme is developed for MDRK.

We extend the LWFR scheme to solve conservation laws on curvilinear meshes with
adaptive mesh refinement (AMR). It is proven that the proposed extension of LWFR
scheme to curvilinear grids preserves constant solution (free stream preservation) under
the standard metric identities. For curvilinear meshes, linear Fourier stability analysis
cannot be used to obtain an optimal CFL number. Thus, an embedded-error based time
step computation method is proposed for LWFR method which reduces the fine tuning
process required to select a stable CFL number using the wave speed based time step
computation. By using the BR1 scheme, LWFR on curvilinear meshes is also applied to
second order equations in conservative form like the compressible Navier-Stokes model.





Chapter 1
Introduction

Hyperbolic conservation laws arise as models of physical systems representing the
conservation of mass, momentum, and energy. They are routinely solved for applica-
tions like Computational Fluid Dynamics (CFD), astrophysics and weather modeling.
Thus, the development of efficient numerical methods for solving these equations is
crucial. The current state of memory-bound HPC hardware [6, 169] makes a strong case
for development of high order discrete methods. By incorporating more higher order
terms, these methods can achieve greater numerical accuracy per degree of freedom
while minimizing memory usage and data transfers. In particular, high order methods
have higher arithmetic intensity and are thus less likely to be memory-bound. The
superior accuracy, efficiency, and higher resolution of these methods also make them
a good fit for LES (Large Eddy Simulation) and DNS (Direct Numerical Simulation)
of turbulent flows. Spectral element methods like Flux Reconstruction (FR) [94] and
Discontinuous Galerkin (DG) [49] are high order methods that have been successful in
resolving advection-dominated flows [195, 141]. The neighbouring FR/DG elements are
coupled only through the numerical flux and thus the bulk of computations are local
to the element, minimizing data transfers.

In comparison to traditional semi-discrete FR/DG schemes, which mainly use
Runge-Kutta (RK) time integration, this work makes developments for Lax-Wendroff
Flux Reconstruction (LWFR) which is a spectral element solver for time dependent
PDE that performs high order evolution to the next time level in a single stage.
The single stage nature implies fewer applications of shock capturing and positivity
limiters, saving computational cost. Moreover, fewer stages minimize the interelement
communication [65], making the method a good fit for modern hardware. There are
also some order barriers in RK methods in the sense that at high orders, we need
more stages than the order of the method. The LWFR method uses a Taylor series
expansion in time and there is no order barrier as any order of accuracy can be reached
by performing Taylor's expansion to the same and its single stage nature makes it
more efficient than RK schemes [137].

In Sections 1.1, 1.2, we do a literature review of Lax-Wendroff and Flux Reconstruc-
tion schemes respectively. In Section 1.3, we review various limiters/shock capturing
techniques used for high order methods in the literature. Section 1.4 gives an overview
of the contributions made in this thesis and Section 1.5 gives an outline of the subse-
quent chapters.

1.1. Lax-Wendroff

In the context of hyperbolic conservation laws, the Lax-Wendroff (LW) time discretiza-
tion in conjunction with a wide range of spatial schemes has been extensively studied
in the literature. These temporal schemes are essentially based on the classical second-
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order Lax-Wendroff method [113]. The Lax-Wendroff temporal discretization, orig-
inally referred to as the Taylor-Galerkin method, was used in the continuous finite
element spatial schemes by Safian et al. [154] and Tabarrok et al. [172], followed by
further improvements in [201]. The case of discontinuous finite element spatial schemes
was studied in [44, 45]. All these methods are confined to a certain order of accuracy
in both space and time. In the finite difference framework, the LW time discretization
was originally proposed by Qui and Shu [138] with the WENO approximation of spatial
derivatives [163]. As an extension to this, a combination with the alternative WENO
method was developed in [99]. The discontinuous Galerkin spatial discretization com-
bined with the LW temporal scheme was originally proposed in [138, 137] (abbreviated
as LWDG) with an advantage of having arbitrary order of accuracy in both space
and time, in other words, with no theoretical order barrier. It was further studied
in [136], where the performance of various numerical fluxes was analyzed for the Euler
equations of compressible flows. It is observed that the LWDG schemes are more
compact and cost effective for certain problems like the two dimensional Euler system
of compressible gas dynamics, especially when nonlinear limiters are applied. In [84]
it is found that the LWDG method of [137] need not exhibit the super-convergence
property. To overcome this issue, a modified version of LWDG was proposed [84] using
the local DG framework of Cockburn et al. [53]. The resulting scheme was found to
satisfy the super-convergence property. For linear conservation laws, the stability and
accuracy properties of LWDG scheme are explored in [170] with the modified LWDG
scheme of Guo et al. [84].

Another significant contribution towards the single stage temporal discretization
was made by Toro et al., initially for linear equations in [178] and for nonlinear systems
in [175], following the idea of generalized Riemann problem (GRP) [24, 87]. These
are widely known as arbitrary high order derivative (ADER) methods. Though their
inception was in the finite volume spatial setup, later they were extended to finite
difference and discontinuous Galerkin frameworks [67]. In the sequel, several authors
have contributed to this approach with the aim of shaping up a compact single time
step scheme, see [177, 100, 66, 42] and references therein. In the flavour of ADER
methods, Dumbser et al. proposed an efficient DG spatial solver in [63] and a finite
difference WENO spatial solver in [64]. These are compact schemes that replace the
so called Cauchy-Kowalevski procedure in the original ADER scheme with an element
local space-time Galerkin predictor step and a discontinuous Galerkin corrector step,
which are also found to be suitable for stiff source terms and further studied by Gassner
et al. in [76]. These methods have been extended to the divergence free MHD problems
with a finite volume WENO spatial scheme in [21]. Through a modification of the
method in [63, 76], Guthrey et al. in [85] proposed a regionally implicit ADER discon-
tinuous Galerkin solver which is stable for higher CFL numbers. A simplified Cauchy-
Kowalevski procedure is developed in [129] which is efficient, easier to implement for
any system, and can be used in ADER type schemes.

The generic versions of LWDG and ADER methods require the computation of
high-order flux derivatives for each hyperbolic system and may require the use of
symbolic manipulation software to perform the algebra. At higher orders of accuracy,
we need higher order derivatives which need the computation of flux Jacobian and
other higher order tensors. This increases the computational task and the process
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has to be performed for each PDE system. In order to overcome this difficulty, an
approximate procedure was originally developed in [208] in the finite difference scenario
and further studied by several other authors [114, 34, 39, 40]. These approximate
procedures for LW type solvers are found to be computationally more efficient and
easier in implementation. As a single time step method, the resulting schemes are
efficient for solving hyperbolic conservation laws. Moreover, it is independent of the
specific form of flux function in the governing equation as it is free from Jacobian and
other higher versions of derivatives.

1.2. Flux Reconstruction

Discontinuous Galerkin (DG) is a Spectral Element Method first introduced by Reed
and Hill [145] for neutron transport equations and developed for fluid dynamics equa-
tions by Cockburn and Shu and others [49]. The DG method uses an approximate
solution which is a polynomial within each element and is allowed to be discontinuous
across interfaces.

The Flux Reconstruction (FR) method [94] is a class of discontinuous Spectral Ele-
ment Methods for the discretization of conservation laws. FR methods utilize a nodal
basis which is usually based on some solution points like Gauss points, to approximate
the solution with piecewise polynomials. The main idea is to construct a continuous
approximation of the flux utilizing a numerical flux at the cell interfaces and a correc-
tion function. The solution at the nodes is then updated by a collocation scheme in
combination with a Runge-Kutta method. The choice of the correction function affects
the accuracy and stability of the method; by properly choosing the correction function
and solution points, FR method can be shown to be equivalent to some discontinuous
Galerkin and spectral difference schemes, as shown in [94, 182]. In [189], semidiscrete
linear stability analysis of FR is performed through a broken Sobolev norm, leading to
a 1-parameter family of correction functions which encompasses the stable correction
functions found in [94]. The family of stable correction functions has been extended
in [191, 182], see [182] for a review. For the 1-parameter family of correction functions
in [189], non-linear stability for E-fluxes was studied in [97] where the significance of
solution points was pointed out, with Gauss-Legendre points being the most resistant
to aliasing driven instabilities. In another study on accuracy with different choices of
solution points [196], the optimality of Gauss-Legendre points was again observed. In
the more recent works of [47, 46], a nonlinearly stable FR scheme was constructed in
split form where a key idea was the application of correction functions to the volume
terms. The long term error behaviour of FR schemes has been studied in [131, 2],
while dispersion and dissipation errors have been analyzed in [190, 5, 187]. The Flux
Reconstruction scheme has been used on curvilinear grids [195, 1, 46]. The development
of Flux Reconstruction on curvilinear grids is primarily based on its equivalence with
the DG scheme; see [105, 108] for the DG scheme on curvilinear grids. Thus, the study
of free stream conditions for the FR scheme on curvilinear grids is the same as in [105].
The computationally efficient performance of FR has been noted in [193, 121, 186],
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which is attributed to the structured computation of finite element methods suitable
for modern hardware [193]. The quadrature-free nature of FR methods together with
the ability to cast the operations as matrix-vector operations that can be performed
efficiently using optimized kernels makes these methods ideal for use on modern vector
processors [193].

1.3. Shock capturing and admissibility preservation of
FR schemes

Despite the high accuracy of high order methods, lower order methods are still rou-
tinely applied in practical applications, in part due to their robustness. Solutions to
hyperbolic conservation laws contain shocks in many problems and it is well known that
high order schemes produce spurious oscillations in those cases. These oscillations can
lead not only to incorrect solutions but can also easily generate nonphysical solutions
like negative density or pressure. In order to develop robust high order methods for
conservation laws, limiters have to be used which adaptively add numerical dissipation
in regions where the numerical solution has a high gradient, possibly because of a
shock. Some of the limiters like [62, 61, 69, 151] have inherent mechanisms that ensure
physically admissible solutions while others like [51, 110, 90] can be made admissibility
preserving by relying on the admissibility preserving in means property of the numer-
ical scheme and using the scaling limiter of [205] to guarantee admissibility of solutions.

In the pioneering work of [51, 52], a Total Variation Bounded (TVB) limiter was
introduced which reduces the scheme to first order or linear in certain elements using a
minmod function to enforce a local TVB property. The TVB limiter does not preserve
any subcell information other than the element mean and trace values, and there have
been several works that develop limiters that are better in this regard. We now give a
literature review of limiters that preserve subcell information.

Moment limiters [31, 33, 110] can be seen as an extension of TVB limiters where
coefficients in an orthonormal basis (moments) are limited in a decreasing sequence,
from higher to lower degree. The hierarchical nature of moment limiters enables the
preservation of subcell information. Another popular strategy is the (H)WENO lim-
iting procedure [135, 20], where the DG polynomial is substituted in troubled regions
by a reconstructed (H)WENO polynomial that is computed by a WENO procedure
using subcell and neighboring cells information. There are also the methods of artificial
viscosity where a second order diffusion term is added in elements where the solution is
non-smooth, preserving the subcell information as the high order polynomial solution
is still used. In [134], an artificial viscosity model was introduced for the Runge-
Kutta (RK) Discontinuous Galerkin (DG) method to add dissipation to the high order
method based on a modal smoothness indicator. The indicator of [134] was further
refined and detailed in [102].

There have also been several schemes that limit the solution by breaking the element
into subcells which offers some advantages over artificial viscosity methods, including
problem independence over boundary conditions and no additional time step restric-
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tions, even when high dissipation is required [90]. In [93], the modal smoothness
indicator of [134] was used to adapt local basis functions, e.g., switching to finite
volume basis in the presence of discontinuities. In [41], subcells were used to assign
different values to artificial viscosity within each element. In [165, 58], after having
detected the troubled zones using the modal indicator of [134], cells are subdivided
into subcells, and a robust first-order finite volume scheme is performed on the sub-
grid in troubled cells. In [90], the modal smoothness indicator of [134] was used to
perform limiting by blending a high order DG scheme with Gauss-Legendre-Lobatto
(GLL) points with a lower order finite volume scheme on subcells. In [148], the method
of [90] was extended to resistive magnetohydrodynamics (MHD) and high order recon-
struction on subcells was used to improve accuracy. In [151], it was shown that the
subcell FV method of [90] can be made positivity preserving by an a posteriori mod-
ification of the blending coefficient. In [150], the subcell finite volume method of [90]
with Rusanov's flux [152] was shown to be equivalent to the sparse Invariant Domain
Preserving method of Pazner [133].

The approaches explained above can be classified as a priori limiters. We briefly
discuss a posteriori limiting techniques where the solution is updated to time tn+1, and
low order re-updates are conducted in the elements that fail certain carefully chosen
admissibility checks. One of these is the MOOD technique [48, 59, 60] where the local
re-updates are computed with reduced order of accuracy until the admissibility checks
pass. In [62, 61], the subcell based technique of [165, 58] is applied in an a posteriori
fashion using 2N +1 subcells for N +1 degrees of freedom per element in the 1-D case,
using least squares approximation to convert back to a degree N polynomial. In case
the least square transformation leads to a violation of admissibility constraints, the
subcell solution values are used in the next evolution and thus the scheme is guaranteed
to not crash. In [188], the DG scheme was reformulated as subcell Finite Volume (FV)
method with appropriate subcells. An indicator was used to mark troubled subcells
and thus the solution could be modified in a very localized manner, preserving subcell
information well.

Other techniques for shock capturing exist that do not fit strictly into the aforemen-
tioned categories. In [69], positivity preservation and shock capturing were achieved
by filtering and enforcing the minimum entropy principle, while in [123], a numerical
damping term was introduced in the DG scheme to control spurious oscillations.

1.4. Contributions

The goal of this thesis is the development of a high order single stage Lax-Wen-
droff scheme with novel numerical flux computation, limiters, and time stepping that
enhance accuracy, stability and performance along with extension of these develop-
ments to a wide variety of problems and on adaptively refined curvilinear meshes. The
scheme is developed to solve general convection domination problems in the conserv-
ative form and the numerical validation has been performed using compressible flows
governed by equations like Euler, Navier-Stokes, and the ten moment problem.
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Lax Wendroff Flux Reconstruction. We combine the Lax-Wendroff method for
time discretization with the FR method for spatial discretization since each of these
two methods has its advantages as discussed in Sections 1.1, 1.2. In this work, we
propose to combine the approximate LW procedure [208] with the FR scheme in space
which leads to a general method that can be applied to any PDE system unlike the
work of [122], where the flux derivatives are computed by using the chain rule of
differentiation. The usage of the chain rule in [122] also leads to complicated tensorial
quantities, especially for large systems and high orders. In previous works like [137], the
solution at the current time level has been used to estimate the dissipative part of the
numerical flux; however, it does not lead to an upwind flux, even for the linear advection
equation. Here we propose to use the time average solution to compute the numerical
flux, which leads to an upwind scheme for linear problems, and also increases the CFL
numbers, which are comparable to other single step methods like ADER-DG scheme.
We also show that the scheme is in fact equivalent to the ADER-DG scheme for linear
problems. An interesting observation we make is that the method at fifth order has a
mild instability even though we use the CFL number determined from Fourier stability
analysis. This mild instability seems to be present even in some RKDG schemes. The
central part of the numerical flux can be computed either by extrapolating it from the
solution points to the faces or by directly estimating them at the faces by applying
the approximate Lax-Wendroff procedure. These two methods perform differently for
non-linear problems, with the extrapolation method leading to loss of convergence
rate at odd polynomial degrees and also having larger errors compared to RK scheme.
The alternate method proposed in this work performs uniformly well at all polynomial
degrees and shows comparable accuracy to RK schemes. The LW method is developed
for hyperbolic systems like Euler equations, where many commonly used numerical
fluxes based on approximate Riemann solvers like Roe, HLL, HLLC, are used, along
with the modifications that enhance the CFL number. The method is described up to
fifth order accuracy and it is cast in terms of matrix-vector operations.

Subcell based blending limiter. The above developments were initially tested for
nonsmooth problems by using the TVB limiter [51, 52]. The TVB limiter is a simple
approach to reduce the scheme to first order or linear in FR elements using a minmod
function. It is known to have shortcomings like loss of accuracy at smooth extrema and
requirement of fine tuning of the TVBM parameter. In this work, the TVB limiter is
considered inadequate for the following key reasons - it does not preserve any subcell
information other than the element mean and trace values, and it is not provably
admissibility preserving for Lax-Wendroff schemes even when used with the scaling
limiter of Zhang and Shu [205]. Some of the works that deal with the first issue have
been discussed in Section 1.3. The second issue has been considered in [128, 199] by
modifying the numerical flux to obtain admissibility in means making the scaling
limiter applicable. In [128], admissibility in means is obtained by limiting the numerical
flux. In [199], a third order maximum-principle satisfying Lax-Wendroff DG scheme is
constructed using the direct DG numerical flux from [43].

We develop the a priori blending limiter of [90] for LWFR as its choice of subcells
gives a natural correction to the time averaged numerical flux to obtain admissibility
preservation in means. The key idea of the blending scheme is to reduce spurious
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oscillations by using a low order scheme in regions where the solution is not smooth,
as detected by a smoothness indicator. The blending limiter by itself is not guaranteed
to control all oscillations and thus unphysical solutions may still be obtained. Thus,
we perform additional limiting to obtain a provably admissibility preserving scheme.
Special attention is also paid to improving accuracy to capture small scale structures.
We use Gauss-Legendre (GL) solution points and subcells obtained from GL quadra-
ture weights instead of the GLL points and weights used in [90]. This is because of
their accuracy advantage as observed by us, and as reported in the literature. In the
non-linear stability analysis for E-fluxes in [97], Gauss-Legendre points were found to
be the most resistant to aliasing driven instability. In another study on accuracy with
different choices of solution points [196], the optimality of Gauss-Legendre points was
again observed. In [18], optimal convergence rates for some non-linear problems were
observed only for Gauss-Legendre solution points.

As observed in [149], accuracy can be improved by performing a high order recon-
struction on the subcells. Since LWFR is a single-stage method, we improve accuracy
by using the single-stage, second order MUSCL-Hancock scheme [185] on the subcells.
As explained in [90], for a DG method of degree N , maintaining conservation requires
the subcell sizes to be given by the N +1 quadrature weights and the solution points
to be the solution points of DG scheme. This implies that the subcells are non-uniform
and the finite volumes are neither cell-centered nor vertex centered. Thus, as a first step
to ensuring that the blended scheme is admissible, we extend the work of [26] to obtain
admissibility preserving MUSCL-Hancock scheme on the non-cell centered grids that
occur from demanding conservation in the blending scheme. Enforcing admissibility as
in [26] requires an additional slope limiting step and we propose a problem independent
procedure to do the same.

To maintain conservation, low and high order updates need to use the same numer-
ical flux at the FR element interfaces (see Remark 5.3). This numerical flux has to
be chosen by blending between the high order time averaged flux and the low order
FV flux. Thus, as the next step to enforce admissibility of the blended Lax-Wendroff
scheme, we carefully select the blended numerical flux using a scaling procedure to
ensure that the lower order updates at solution points neighboring the interfaces are
admissible.

In [151], the blending limiter of [90] has been made admissibility preserving by
changing the blending coefficients in an a posteriori fashion. Since our choice of the
blended numerical flux implies the admissibility of lower order updates at all solution
points, we could take the same approach. In this work, we instead use the fact that,
with the blended numerical flux, admissibility of lower order scheme implies admis-
sibility in the means of the blended scheme and thus the scaling limiter of [205] can
now be used to obtain an admissibility preserving scheme. In [128], a correction has
been made to the Lax-Wendroff numerical flux enforcing the admissibility in means
property and then the scaling limiter [205] has been used to obtain an admissibility pre-
serving Lax-Wendroff scheme. Our work differs from [128] as we only target to ensure
admissibility of the lower order scheme and the admissibility in means is consequently
obtained. This implies that our correction requires less storage and does not require
additional loops, minimizing memory reads.
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Generalized admissibility preservation. The subcell based blending scheme sup-
presses spurious oscillations but also gives a natural flux limiting procedure to ensure
admissibility preservation of the LWFR scheme. We also develop a generalized flux
limiting process that can also be used when there is no subcell based limiting scheme.
The initial argument is similar to performing a decomposition of the cell average into
fictitious finite volume updates as in [205, 206]. The difference from [205] arises as
some of the fictitious finite volume updates involve the LW high order fluxes. Then,
it is seen that, if the LW numerical flux is limited to ensure that the updates with its
fictitious finite volume fluxes are admissible, the scheme will be admissibility preserving
in means. In addition to showing that our positivity preserving framework preserves
admissibility in the presence of shocks and rarefactions, we also introduce the first
LWFR scheme in the presence of source terms. The approach involves adding time
averages of the sources and thus we also propose a source term limiting procedure so
that admissibility is maintained. The claim is validated on the Ten Moment equations,
which are derived by Levermore et al. [118] by taking a Gaussian closure of the kinetic
model.

Multiderivative Runge-Kutta. In [119], a two stage fourth order Multiderivative
Runge-Kutta (MDRK) scheme was introduced for solving hyperbolic conservation laws
by solving a Generalized Riemann Problem (GRP). We show the first combination
of MDRK with a Flux Reconstruction scheme by using the scheme of [119]. We also
use the construction of the numerical flux from [18]. In particular, we use the D2
dissipation and show that it leads to enhanced Fourier CFL stability limit. We also
use the EA scheme which leads to enhanced accuracy for non-linear problems when
using Gauss-Legendre solution points. We also develop admissibility preserving subcell
based blending scheme and show how it is superior to other schemes like a TVB limiter.

Adaptive, curvilinear grids and time stepping. The LWFR scheme with the
above features is further developed to incorporate three new features:

1. Ability to work on curvilinear, body-fitted grids

2. Ability to work on locally and dynamically adapted grids with hanging nodes

3. Automatic error based time step computation

Curvilinear grids are defined in terms of a tensor product polynomial map from a
reference element to the physical element. The conservation law is transformed to the
coordinates of the reference element and then the LWFR procedure is applied leading to
a collocation method that has a similar structure as on Cartesian grids. This structure
also facilitates the extension of the provably admissibility preserving subcell based
blending scheme to curvilinear grids. The FR formulation on curvilinear grids is based
on its equivalence with the DG scheme, see [105], which also obtained certain metric
identities that are required for preservation of constant solutions, that is, free stream
preservation. See references in [105] for a review of earlier studies of metric terms in
the context of other higher order schemes like finite difference schemes. The free stream
preserving conditions for the LWFR scheme are proven to be the same discrete metric
identities as that of [105]. The only requirement for the required metric identities in
two dimensions is that the mappings used to define the curvilinear elements must have
degree less than or equal to the degree of polynomials used to approximate the solution.
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In many problems, there are non-trivial and sharp solution features only in some
localized parts of the domain and these features can move with respect to time. Using a
uniform mesh to resolve small scale features is computationally expensive and adaptive
mesh refinement (AMR) is thus very useful. In this work, we perform adaptive mesh
refinement based on some local error or solution smoothness indicator. Elements with
high error indicator are flagged for refinement and those with low values are flagged
for coarsening. A consequence of this procedure is that we get non-conformal elements
with hanging nodes which is not a major problem with discontinuous Galerkin type
methods, except that one has to ensure conservation is satisfied. For discontinuous
Galerkin methods based on quadrature, conservation is ensured by performing quadra-
ture on the cell faces from the refined side of the face [155, 202]. For FR type methods
which are of collocation type, we need numerical fluxes at certain points on the element
faces, which have to be computed on a refined face without loss of accuracy and such
that conservation is also satisfied. For the LWFR scheme, we develop the Mortar
Element Method [106, 107] to compute the solution and fluxes at non-conformal faces.
The resulting method is conservative and also preserves the free-stream condition on
curvilinear, adapted grids.

The choice of time step is restricted by a CFL-type condition in order to satisfy
linear stability and some other non-linear stability requirements like maintaining pos-
itive solutions. Linear stability analysis can be performed on uniform Cartesian grids
only, leading to some CFL-type condition that depends on wave speed estimates. In
practice, these conditions are then also used for curvilinear grids but they may not
be optimal and may require tuning the time step for each problem by adding a safety
factor. Thus, automatic time step selection methods based on some error estimates
become very relevant for curvilinear grids. Error based time stepping methods are
already developed for ODE solvers; and by using a method of lines approach to con-
vert partial differential equations to a system of ordinary differential equations, error-
based time stepping schemes of ODE solvers have been applied to partial differential
equations [28, 101, 194] and recent application to CFD problems can be found in [140,
142]. The LWFR scheme makes use of a Taylor expansion in time of the time averaged
flux; by truncating the Taylor expansion at one order lower, we can obtain two levels
of approximation, whose difference is used as a local error indicator to adapt the time
step. As a consequence, the user does not need to specify a CFL number, but only needs
to give some error tolerances based on which the time step is automatically decreased
or increased.

Parabolic equations. We extend the LWFR scheme to second order parabolic equa-
tions on curvilinear meshes by making use of the BR1 scheme. The BR1 is known
to retain the superior properties of FR/DG, is applicable to underresolved turbulent
simulations [77], and was proven to be stable in [78]. We use the error based time
stepping developed for LWFR, which is especially relevant here since a Fourier CFL
stability limit of LWFR is also not known for second order PDE. The ADER schemes,
which are another class of single stage solvers have also been extended to solve second
order PDE in [75] by including additional diffusion in the numerical flux in contrast to
the BR1 scheme used here. This is the first work where any single stage method has
been combined with the BR1 scheme.
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1.5. Outline

The rest of the thesis is organized as follows:
Chapter 2 introduces the basic notations to describe the relevant equations of

motion. These include first order hyperbolic systems giving the example of compress-
ible Euler's equations, but also second order equations like compressible Navier-Stokes
equations.

Chapter 3 describes the spatial discretization using Flux Reconstruction for hyper-
bolic conservation laws. The description of finite volume and Discontinuous Galerkin
methods for hyperbolic conservation laws is also provided.

Chapter 4 describes the core Lax-Wendroff Flux Reconstruction scheme using the
approximate Lax-Wendroff procedure. The D2 dissipation to compute the dissipative
part of numerical flux is introduced along with a Fourier stability analysis showing
enhancement of CFL numbers in comparison to previous works. The computation of
EA scheme to compute the central part of numerical flux is also introduced which
enhances accuracy for nonlinear problems. The scheme is described for 1-D and 2-D
and numerically validated for accuracy and stability with various scalar problems and
Euler's system of equations.

Chapter 5 describes the subcell based blending limiter for LWFR. In the direction
of robustness, provable admissibility preservation is obtained by careful construction
of the blended numerical flux . In the direction of accuracy, Gauss-Legendre points are
used and MUSCL-Hancock reconstruction is performed on the subcells. An admis-
sibility preserving MUSCL-Hancock reconstruction scheme is developed for non-cell
centred grids that naturally arise as subcells to ensure the conservation property. The
claims are verified by numerical experiments on Euler's equations. The admissibility
preservation is verified by problems that have shocks with very high pressure ratios.
The accuracy improvement is verified on problems that have small scale structures
along with strong shocks.

Chapter 6 introduces a generalized admissibility preserving framework for LWFR
schemes extending the scaling limiter of Zhang and Shu. The framework is extended to
equations with source terms maintaining admissibility. The admissibility preservation
is verified by numerical results on Ten Moment equations of gas dynamics.

Chapter 7 introduces a two stage, fourth order multiderivative Runge-Kutta
(MDRK) method in Flux Reconstruction framework by writing each stage as an evolu-
tion involving a time average flux. The time average flux is approximated by performing
the LWFR procedure at each stage. The D2 dissipation and EA flux are introduced
for MDRK enhancing stability and accuracy. The blending limiter is applied at each
stage to obtain a provably admissibility preserving scheme. The scheme and claims
are validated by a recent test suite for high order methods on Euler's equations.

Chapter 8 extends LWFR to adaptively refined curvilinear meshes. The mortar
element method is developed for LWFR to obtain a scheme that is conservative, free
stream and admissibility preserving. A Fourier CFL stability analysis does not apply
to curvilinear meshes and thus an error based time stepping method is introduced. The
scheme is validated by numerical experiments on Compressible Euler's equations. The
time stepping method is shown to be of superior performance in comparison to CFL
based time stepping even though it requires less fine tuning.
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Chapter 9 extends the LWFR scheme to advection-diffusion equations by using the
BR1 (Bassi-Rebay) scheme. The scheme is numerically validated through test cases of
compressible Navier Stokes equations on curvilinear meshes by comparing the obtained
numerical solutions with reference solutions.
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Chapter 2
Equations of motion

In this chapter, we give a brief overview of the PDEs of interest along with the needed
notations and definitions.

2.1. Hyperbolic conservation laws
Consider

u=u(x; t): 
�R+¡!Uad�Rm (2.1)

to be a vector of conserved quantities satisfying a system of equations of the form

@tu+rx � f(u)= @tu+
X
i=1

d

@xifi(u)=0 (2.2)

The set 
�Rd is the domain and Uad�Rm (2.1) is a convex open set containing the
set of physically admissible solutions of (2.2). The f(u)=(f1;:::; fd)2Rp�d are called
the fluxes with fi being the flux in the ith direction. The equations (2.2) are called a
system of conservation laws . By fundamental theorem of calculus, u is a classical C1

solution to (2.2) if and only if for any open set 
0�


d
dt

Z

0
u(x; t) dx=¡

Z
@
0
f �ndS=¡

Z
@
0
fini dS (2.3)

where n=(ni)i=1
d is the outward unit normal across @
0. The equation (2.3) is called

the integral form of (2.2) and it says that rate of change of u in any volume 
0�

depends only on the flux through the boundary @
0 which is why (2.2) is called a
conservation law. This integral form of conservation law is how the equation (2.1) is
usually derived; e.g., Euler's equations (2.13) are derived from conservation of mass,
momentum and energy. In this work, we only deal with hyperbolic conservation laws
which are defined as follows.

Definition 2.1. Let Ai(u) := fi
0(u) be the flux Jacobians. Then the system (2.2) is

called hyperbolic if, for any u2Uad�Rm and any n2Rd/f0g, the matrix

A(u;n) :=
X
i=1

d

Ai(u)ni

has m real eigenvalues �1(u)� : : : � �m(u) and m linearly independent eigenvectors
frj(u)gj=1m . The eigenvalues are also called the wave speeds or characteristic speeds
associated with (2.2). If, in addition, these eigenvalues are distinct, then the system is
said to be �strictly hyperbolic�.

The pair (�i(u);ri(u)) corresponding toA(u;n) is called the �i-characteristic field .
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Definition 2.2. For i 2 f1; : : : ; mg, the i-characteristic field of (2.2) is genuinely
nonlinear when

r�i(u) � ri(u)=/ 0; 8u2Uad (2.4)

and linearly degenerate when

r�i(u) � ri(u)= 0; 8u2Uad (2.5)

The Cauchy problem for the above system also requires the prescription of initial
conditions

u(x; 0)=u0(x); x2Rd (2.6)

where u0:Rd!Rm and boundary conditions on @
.

2.1.1. Weak formulation
In many practical problems, solutions to hyperbolic conservation laws contain non-
smooth solutions including shocks and rarefactions. In fact, it is well known that the
solutions can develop discontinuities in finite time, even when the initial condition is
smooth [115]. Thus, the class of solutions to (2.2) must be enlarged beyond the classical
C1 solutions to include discontinuous solutions. For simplicity, we take the physical
domain to be 
=Rd. Then, we consider solutions in the space L1(Rd�R+;Uad) of
bounded Lebesgue measure functions u:Rd�R+!Uad and define them to be solutions
in a weak (distributional) sense as follows.

Definition 2.3. A function u2L1(Rd�R+;Uad) is called a weak solution of (2.2)
with initial condition u02L1(Rd;Uad) ifZ

0

1Z
Rd

 
u �@t�+

X
i=1

d

fi � @xi�

!
dtdx+

Z
Rd

u0(x) ��(x;0) dx=0 (2.7)

for all �2Cc1(Rd�R+).

The weak formulation (2.7) is obtained by taking the inner product of (2.2) with
a test function � 2Cc1(Rd�R+) and performing integration by parts in space and
time. As desired, the weak formulation allows for solutions with less regularity and
every C1 solution of (2.2) satisfies (2.7). The formulation (2.7) imposes conditions on
the discontinuity, known as the Rankine-Hugoniot conditions. Let ¡ be a surface of the
discontinuity in Rd�R+ for the solution u, and n~ = (n1; : : : ; nd; nt)=/ 0 be the normal
vector to ¡. Let us denote by u� the limits of u on either side of ¡

u�(x; t)= lim
�!0+

u((x; t)� �n~)

Theorem 2.4. (Rankine-Hugoniot (RH) condition). Consider a u 2L1(Rd�
R+;Uad) that has a surface of discontinuity ¡ and is smooth everywhere else. Then, u
is a solution of (2.7) if and only if it satisfies (2.2) in regions of smoothness and

(u+¡u¡)nt+
X
i=1

d

(fi(u+)¡ fi(u¡))ni=0 (2.8)

across the surface of discontinuity ¡.
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In the 1-D case where dimension d=1, the ¡ can be parametrized as (�(t); t). Thus,
the normal in (t; x) plane is given by n~ = (1;¡s) with s= d�/dt being the speed of
the discontinuity. Thus, the RH condition (2.8) becomes

s (u+¡u¡)= f(u+)¡ f(u¡) (2.9)

2.1.2. The Riemann problem
A particularly important special case of Cauchy problem (2.6) for 1-D conservation
laws

@tu+ @xf(u)=0

is the Riemann problem with piecewise constant initial data

u(x; 0)=u0(x)=

�
ul; x< 0
ur x> 0

(2.10)

where ul;ur are constant states. This is the simplest problem that can be posed for
conservation laws and is also central in the theory as it exhibits many important
features encountered with general solutions of (2.2).

Figure 2.1. Solution structure for the Riemann problem of a system of conservation laws. The
illustration is from [143].

We assume for simplicity that the 1-D system (2.2) is strictly hyperbolic (Defin-
ition 2.1) and thus has m distinct eigenvalues. This is satisfied by the compressible
Euler's equations (2.11) in 1-D. The solution of the Riemann problem (2.10) is as in
Figure 2.1 which consists of m distinct waves emanating from the origin, corresponding
to each eigenvalue. The solutions to such problems are self-similar [115] in the sense
that u(x; t)=W (x/t). The m+1 states are connected by the following waves:

� Shock wave: The �i-wave is a shock wave if it corresponds to a genuinely
nonlinear field (2.4) and connects two states u¡ and u+ through a single jump
discontinuity. The discontinuity moves with speed Si satisfying 1-D RH condi-
tion (2.9) and relating to the eigenvalues by the Lax entropy condition

�i(u¡)>Si>�i(u+)
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As shown in Figure 2.2a, the characteristic lines dx/dt=�i on both sides collide
leading to the shock wave dx/dt=Si.

� Contact wave: The �i-wave is a contact wave, if it corresponds to a linearly
degenerate field (2.5) and connects two states u¡ and u+ through a single jump
discontinuity. As in the case of the shock wave, the discontinuity moves with a
speed Si given by the RH condition (2.8). It additionally satisfies the parallel
characteristic condition

�i(u¡)=Si=�i(u+)

This implies that the characteristic lines on either side of the contact line dx/
dt=Si run parallel to it, as shown in Figure 2.2b.

� Rarefaction: The �i-wave corresponds to a rarefaction, if it connects two states
u¡ and u+ through a smooth transition in a genuinely nonlinear field. As shown
in Figure 2.2c, the characteristic lines corresponding to a rarefaction diverge
from each other, i.e.,

�i(u¡)<�i(u+)

(a) Shock wave (b) Contact wave (c) Rarefaction

Figure 2.2. Characteristic lines for simple waves forming the solution to a Riemann problem. The
illustration is from [143].

2.2. Compressible Euler's equations

The compressible Euler's equations of gas dynamics in 3-D are given by

@t

0BB@ �
�v
E

1CCA+rx �

0BB@ �v
�v
v+ p I
v (E+ p)

1CCA=0; I =(�ij) 1�i;j�3 (2.11)

The conservative variables are thus given by u= (�; � v ; E) = (�; � v1; � v2; � v3; E)
where �; v ; p; E denote the fluid density, velocity, pressure and total energy per unit
volume. For a polytropic gas, an equation of state E =E(�; u; v; p) which leads to a
closed system is given by

E=E(�;v ; p)=
p


 ¡ 1 +
1
2
� jv j2 (2.12)
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where 
 > 1 is the adiabatic constant, which will usually be considered to be 1.4, the
typical value for air. The admissible set is given by

Uad=
�
u=(�; �v ; E): �> 0; p=(
 ¡ 1)

�
E ¡ 1

2
� jv j2

�
> 0

�
Defining the flux Jacobian Ai(u)= fi

0(u) for i=1; 2; 3, we consider the matrix

A(u;n) = A1n1+A2n2+A3n3; n=(n1; n2; n3)2R3

The eigenvalues and eigenvectors of A(u;n) are given by

�1= vn¡ a; �2=�3=�3= vn; �5= vn+ a

R(u;n) = (r1; r2; r3; r4; r5)

=

0BBBBBBBBBB@
1 1 0 0 1

v1¡ a n1 v1 n2 ¡n3 v1+ a n1
v2¡ a n2 v2 ¡n1 0 v2+ a n2
v3¡ a n3 v3 0 n1 v3+ a n3

H ¡ a vn 1

2
jv j2 v1n2¡ v2n1 v3n1¡ v1n3 H + a vn

1CCCCCCCCCCA
where vn=v �n, a= 
 p/�

p
is the speed of sound and H=(
¡1)¡1a2+ jv j2/2 is the

specific enthalpy. Assuming the solution is admissible (i.e., �; p > 0), the eigenvalues
are real and the corresponding eigenvectors are linearly independent. Thus, Euler's
equations (2.11) form a hyperbolic system. In this work, we will be restricted to the
2-D compressible Euler's equations which are given by

@
@t

0BBBBBB@
�
� u
� v
E

1CCCCCCA+ @
@x

0BBBB@
� u

p+ � u2

� u v
(E+ p)u

1CCCCA+ @
@y

0BBBB@
� v
� u v

p+ � v2

(E+ p) v

1CCCCA=0 (2.13)

where u; v= v1; v2.

2.3. Compressible Navier-Stokes equations

The Euler's equations (2.11) describe inviscid flows which do not account for viscosity
and are thus applicable where the effect of viscosity is negligible in comparison to the
advection. These advection dominated flows occur in a variety of practical problems.
However, viscous effects do become important for studying flows with boundary layers
near solid walls and the behaviour of fluids in turbulent regions. Thus, we consider the
compressible Navier-Stokes equations which are hyperbolic-parabolic in nature. The
equations are given in three dimensions as

@t

0BB@ �
�v
E

1CCA+rx �

0BB@ �v
�v
v+ p I
v (E+ p)

1CCA=rx �

0BB@ 0
�

� v¡Q

1CCA (2.14)
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with the symmetric shear stress tensor � and heat flux Q given by Newtonian and
Fourier constitutive relations respectively

� = � (rv+(rv)T)¡ 2
3
� (r�v) I ; Q=(Q1; Q2; Q3)=¡�r� (2.15)

Here, I=(�ij)1�i;j�3, � is the coefficient of dynamic viscosity and � is the coefficient of
heat conductance. The � denotes temperature of the flow which is obtained using the
ideal gas law p= �R� where R is the gas constant with R= cp¡ cv. The coefficient of
heat conductance can be determined from � using the relation

�=
� cp
Pr

where Pr is the Prandtl number, which is assumed to be constant for a given gas. The
Euler's equations (2.11) can be recovered from the Navier-Stokes equations (2.14) by
setting �=0.

An important non-dimensional number for viscous flows is the Reynolds number
given by

Re=
LU
�

where L and U are the respective characteristic length and velocity scales of the flow,
�= �/�0 is the coefficient of kinematic viscosity given the free stream density �0. The
Reynolds number can be seen as a measure of the ratio of advection and diffusion. High
Reynolds number flows are advection dominated flows, while low Reynolds number
flows are diffusion dominated.

In this work, we will be restricted to the Navier-Stokes equations in two dimensions
which are given by

@
@t

0BBBB@
�
� u
� v
E

1CCCCA+ @
@x

0BBBB@
� u

p+ � u2

� u v
(E+ p)u

1CCCCA+ @
@y

0BBBB@
� v
� u v

p+ � v2

(E+ p) v

1CCCCA

=
@
@ x

0BBBB@
0
�11
�12

u �11+u2 �12¡Q1

1CCCCA+ @
@ y

0BBBB@
0
�21
�22

u1 �21+u2 �22¡Q2

1CCCCA
(2.16)

where u; v= v1; v2 and from (2.15)

�11=
4
3
�@xu¡

2
3
�@y v; �12= �21= � (@yu+ @x v); �22=

4
3
� @y v¡

2
3
�@xu

Q1=¡�@x �; Q2=¡� @y �

where � is the temperature specified by ideal gas law p= �R�.
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Chapter 3
Flux Reconstruction

In this chapter, we discuss the flux reconstruction scheme and its corresponding finite
element basis that will be used in the subsequent chapters. The same basis is used to
describe the discontinuous Galerkin method. The finite volume method is also briefly
reviewed.

3.1. Conservation law

Let us consider a conservation law of the form

ut+ f(u)x=0 (3.1)

where u is some conserved quantity, f(u) is the corresponding flux, together with
some initial and boundary conditions. The physically correct solution to (3.1) is going
to be in the admissible set Uad (2.1) whose detailed discussion is in Chapter 5. In this
chapter, we focus on description of the finite element grid and basis.

We will divide the computational domain 
 into disjoint elements 
e, with


e= [xe¡ 1

2

; xe+ 1

2

] and �xe=xe+ 1

2

¡xe¡ 1

2

Let us map each element to a reference element, 
e! [0; 1], by

x 7! �=
x¡xe¡ 1

2

�xe

Inside each element, we approximate the solution by degreeN �0 polynomials belonging
to the set PN. For this, choose N +1 distinct nodes

0� �0< �1< � � �< �N � 1 (3.2)

which will be taken to be Gauss-Legendre (GL) or Gauss-Lobatto-Legendre (GLL)
nodes, and will also be referred to as solution points. There are associated quadrature
weights wj such that the quadrature rule is exact for polynomials of degree up to
2N +1 for GL points and up to degree 2N ¡ 1 for GLL points. Note that the nodes
and weights we use are with respect to the interval [0; 1] whereas they are usually
defined for the interval [¡1;+1]. The solution inside an element 
e is given by

x2
e: uh(�; t)=
X
p=0

N

ue;p(t) `p(�) (3.3)

where f`pg are degree N Lagrange polynomials given by

`p(�)=
Y

q=0;q=/ p

N
�¡ �q
�p¡ �q

2PN ; `p(�q)= �pq; 0� p�N (3.4)
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Figure (3.1a) illustrates a piecewise polynomial solution at some time tn with discon-
tinuities at the element boundaries. Note that the coefficients ue;p which are the basic
unknowns or degrees of freedom (dof), are the solution values at the solution points.

Ωe−1 Ωe Ωe+1

uh

Ωe−1 Ωe Ωe+1

f δ

h, fh

(a) (b)

Figure 3.1. (a) Piecewise polynomial solution at time tn, and (b) discontinuous and continuous flux.

The numerical method will require spatial derivatives of certain quantities. We can
compute the spatial derivatives on the reference interval using a differentiation matrix
D=[Dpq] whose entries are given by

Dpq= `q
0(�p); 0� p; q�N (3.5)

For example, we can obtain the spatial derivatives of the solution uh at all the solution
points by a matrix-vector product as follows2664 @xuh(�0; t)

���
@xuh(�N ; t)

3775= 1
�xe

Du(t); u=

2664 ue;0
���

ue;N

3775
We will use symbols in sans serif font like D; u, etc. to denote matrices or vectors
defined with respect to the solution points. The entries of the differentiation matrix
are given by

Dpq=
Wq

Wp

1
(�p¡ �q)

; p=/ q and Dpp=¡
X

q=0;q=/ p

N

Dpq

where the Wp are barycentric weights given by

Wp=
1Q

q=0;q=/ p
N (�p¡ �q)

; 0� p�N

Define the Vandermonde matrices corresponding to the left and right boundaries of a
cell by

VL=[`0(0); `1(0); : : : ; `N(0)]>; VR=[`0(1); `1(1); : : : ; `N(1)]> (3.6)

which is used to extrapolate the solution and/or flux to the cell faces for the compu-
tation of inter-cell fluxes.
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3.2. Finite volume method

Define the cell center of an element 
e= [xe¡ 1

2

; xe+ 1

2

] as

xe=
1
2
(xe¡ 1

2

+xe+ 1

2

)

In a finite volume method, the unknowns to solve for are the element averages u�e(t)

u�e(t)�
1
�xe

Z

e

u(x; t) dx; u�e
n :=u�e(t

n)

where tn is the current time level for n�0. Integrating the conservation law (3.1) over
the element 
e gives

du�e
dt

+
fe+ 1

2

¡ fe¡ 1

2

�xe
=0 (3.7)

where fe+ 1

2

� f(u(xe+ 1

2

; t)) is the numerical flux function that couples neighbouring

elements. The fundamental case is the one where the numerical flux is computed using
only the adjacent elements

fe+ 1

2

= f(u�e;u�e+1) (3.8)

In this case, the temporal discretization of (3.7) can be performed by the forward Euler
method to get a first order accurate method

u�e
n+1=u�e

n¡ �tn

�x
(fe+ 1

2

¡ fe¡ 1

2

); �tn := tn+1¡ tn (3.9)

The choice of numerical flux (3.8) is typically made taking the specific conservation
law (3.1) into consideration. It is based on the solution of a Riemann problem (Sec-
tion 2.1.2) of the conservation law (3.1)

u(x; 0)=

�
ul; x< 0
ur; x> 0

To be precise, recalling the self-similarity of solutions of Riemann problem, we denote
the exact solution of the Riemann problem as u(x/t;ul;ur). Then, the Godunov's flux
for (3.8) is denoted by

f(u�e;u�e+1)= f(u(0;u�e;u�e+1))

and an approximate Riemann solver is based on

f(u�e;u�e+1)= f(uapprox(0;u�e;u�e+1))

Some numerical fluxes/approximate Riemann solvers for compressible Euler's equa-
tions (2.11) like Roe, HLL and HLLC are discussed in Appendix D. A numerical
flux that applies to general conservation law is the Lax-Friedrichs flux. For a general
conservation law with uniform grid size �x=�xe for all e, the global Lax-Friedrichs
flux [116] is given by

fe+ 1

2

=
1
2
(f(u�e)+ f(u�e+1))¡

�x
2�tn

(u�e+1¡u�e) (3.10)
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In the absence of the term �x

2�tn
(u�e+1¡u�e), the scheme (3.9) using (3.10) becomes the

Forward Time Central Scheme (FTCS) which is unconditionally unstable. This term
is called the dissipation term as its contribution to (3.7) gives a central approximation
to (�x2/2�t) @xxu. Following a von Neumann stability analysis, the time step size
�tn of the scheme (3.9, 3.10) is usually computed to satisfy

�tnmax
e

1
�xe

�(f 0(u�e))� 1

where �(A) is the maximum eigenvalue of a matrix A in absolute values. In practice,
the time step �tn is taken to be close to the CFL limit and thus corresponding to each
element e, we would like to have �xe/�tn� �(f 0(u�e)) so that (3.10) motivates the
local Lax-Friedrichs/Rusanov flux [152]

fe+ 1

2

= fRusanov(u�e;u�e+1) :=
1
2
(f(u�e)+ f(u�e+1))¡

1
2
�e+ 1

2

(u�e+1¡u�e)
�e+ 1

2

=max f�(f 0(u�e)); �(f 0(u�e+1))g
(3.11)

A numerical flux can use more neighbouring elements and get higher order accuracy

fe+ 1

2

= f(u�e¡k; : : : ;u�e¡1;u�e;u�e+1; : : : ;u�e+l)

fe+ 1

2

= f(u(xe+ 1

2

; tn))+O(�xe
k+l+1)

(3.12)

The approach where we obtain a semidiscrete scheme by discretizing only in space (3.7)
is called the method of lines. Once a high order flux is chosen as in (3.12), in order
to get high order accuracy in time, a multistage Runge-Kutta method for solving
ODEs is used for solving the semidiscrete equation (3.7). There are many ways in
which high order accuracy in space can be obtained. For second order accuracy, a
MUSCL scheme [54] can be used that is based on performing linear reconstructions
of the solution. For higher order accuracy, piecewise parabolic [55], ENO [88] and
WENO [163] schemes can be used. While maintaining accuracy, the finite volume
methods need to be chosen to preserve the admissibility set Uad (2.1) of the conservation
law (3.1) and thus we define admissibility preserving finite volume schemes as follows.

Definition 3.1. The finite volume method with flux approximation (3.12) is said to
be admissibility preserving if u�e¡k¡1n ;u�e¡k

n ; : : : ;u�e¡1
n ;u�e

n;u�e+1
n ; : : : ;u�e+l

n 2Uad and

�tn��t�(u�n) (3.13)
imply

u�e
n+1=u�e

n¡ �tn

�xe
(fe+ 1

2

¡ fe¡ 1

2

)2Uad (3.14)

Thus, if solution at current time level is admissible at all points in the stencil and the
time step restriction (3.13) is satisfied, the finite volume evolution under forward Euler
method (3.9) will also be admissible.

A finite volume scheme using an admissibility preserving finite volume flux will
preserve admissibility of solutions if the system of ODE (3.7) is solved with a strong
stability preserving Runge-Kutta (SSPRK) method [162, 163]. This is because SSPRK
methods are convex combinations of forward euler methods in each stage [205].
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3.3. Runge-Kutta DG

This section introduces the Discontinuous Galerkin (DG) method with Runge-Kutta
discretization in time. We multiply the conservation law (3.1) by a test function v2PN
and integrate over element 
e Z


e

�
@u
@ t

+
@f
@ x

�
v dx=0

An integration by parts is performed on the flux derivative term to getZ

e

@u
@ t

v dx¡
Z

e

f(u)
@ v
@ x

dx

+ f(xe+ 1

2

; t) v(x
e+

1

2

¡ )¡ f(xe¡ 1

2

; t) v(x
e¡ 1

2

+ )=0

We now replace u with the numerical approximation uh (3.3). At x=xe+ 1

2

, uh may be
discontinuous, i.e.,

uh(xe+ 1

2

¡ ; t)=/ uh(xe+ 1

2

+ ; t)

Following the finite volume method, we will approximate the flux by a numerical flux
function (3.8) denoted as

fe+ 1

2

(t)= f(uh(xe+ 1

2

¡ ; t);uh(xe+ 1

2

+ ; t))

For example, the numerical flux can be taken to be fe+ 1

2

(t) = fRusanov(uh(xe+ 1

2

¡ ; t);

uh(xe+ 1

2

+ ; t)) (3.11). Thus, the semi-discrete DG scheme is given byZ

e

@uh
@ t

v dx¡
Z

e

f(uh)
@ v
@ x

dx

+ fe+ 1

2

(t) v(x
e+

1

2

¡ )¡ fe¡ 1

2

v(x
e¡ 1

2

+ )=0
(3.15)

The scheme (3.15) is implemented by performing quadrature in space. It is explicit in
the sense that the quadrature in the temporal derivative term will only require a local
mass matrix to be inverted. If degree N quadrature with Gauss-Legendre points is
performed, the integral on temporal derivative can be computed exactly. The integral
on the flux term cannot be performed exactly because the flux f is usually nonlinear.
We define a discontinuous flux approximation taking flux values at solution points
giving a degree N polynomial represented in Lagrange basis (3.4) as

fh
�(�; t)=

X
p=0

N

f(ue;p(t)) `p(�) (3.16)

If quadrature is performed at the solution points, the equation (3.15) is equivalent toZ

e

@uh
@ t

v dx¡
Z

e

fh
� @ v
@ x

dx

+ fe+ 1

2

(t) v(x
e+

1

2

¡ )¡ fe¡ 1

2

v(x
e¡ 1

2

+ )=0

3.3 Runge-Kutta DG 25



Since we use Gauss-Legendre (GL) solution points or Gauss-Lobatto-Legendre (GLL),
the integral on flux derivative is exact. Thus, we can perform an integration by parts
in space to get the strong form DGZ


e

@uh
@ t

v dx+
Z

e

dfh
�

dx
v dx

+(fe+ 1

2

(t)¡ fh�(xe+ 1

2

¡ )) v(x
e+

1

2

¡ )¡ (fe¡ 1

2

¡ fh�(xe¡ 1

2

+ )) v(x
e¡ 1

2

+ )=0
(3.17)

The scheme (3.17) is equivalent to the Flux Reconstruction (FR) scheme (Section 3.4)
when GL/GLL points are used as solution and quadrature points. The proof is detailed
in Appendix B, but the crucial idea is to take the test function to be v= `p (3.4) and
use the identities (B.4).

3.4. Runge-Kutta FR

The Runge-Kutta Flux Reconstruction (RKFR) scheme is based on an FR spatial
discretization leading to a system of ODE followed by the application of an RK scheme
to march forward in time. The key idea is to construct a continuous polynomial approx-
imation of the flux which is then used in a collocation scheme to update the nodal
solution values. At some time t, we have the piecewise polynomial solution defined
inside each cell; the FR scheme can be described by the following steps.

Step 1. In each element, we construct the flux approximation by interpolating the
flux at the solution points leading to a polynomial of degree N , given by (3.16). The
flux (3.16) is in general discontinuous across the elements similar to the red curve in
Figure 3.1b.

Step 2. We build a continuous flux approximation by adding some correction terms
at the element boundaries

fh(�; t)=
h
fe¡ 1

2

(t)¡ fh�(0; t)
i
gL(�)+ fh

�(�; t)+
h
fe+ 1

2

(t)¡ fh�(1; t)
i
gR(�)

where

fe+ 1

2

(t)= f(uh (xe+ 1

2

¡ ; t);uh (xe+ 1

2

+ ; t))

is a numerical flux function that makes the flux unique across the cells. The continuous
flux approximation is illustrated by the black curve in Figure 3.1b. The functions gL;
gR are the correction functions that must be chosen to obtain a stable scheme.

Step 3. We obtain the system of ODE by collocating the PDE at the solution points

due;p
dt

(t)=¡ 1
�xe

@fh
@�

(�p; t); 0� p�N

which is solved in time by a Runge-Kutta scheme.

Correction functions. The correction functions gL; gR should satisfy the end point
conditions

gL(0)= 1; gR(0)= 0
gL(1)= 0; gR(1)= 1

(3.18)
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which ensures the continuity of the flux, i.e., fh(xe+ 1

2

¡ ; t)= fh(xe+ 1

2

+ ; t)= fe+ 1

2

(t). More-

over, we want them to be close to zero inside the element. There is a wide family of
correction functions available in the literature [94, 189]. A family of correction functions
depending on a parameter c was developed in [189] based on stability in a Sobolev-
type norm. Two of these functions, the Radau and g2 correction functions, are of
major interest since they correspond to commonly used DG formulations. The Radau
correction function is a polynomial of degree N +1 which belongs to the family of [189]
corresponding to the parameter c=0 and given by

gL(�) =
(¡1)N
2

[LN (2 �¡ 1)¡LN+1 (2 �¡ 1)]

gR(�) =
1
2
[LN (2 �¡ 1)+LN+1 (2 �¡ 1)]

(3.19)

where LN: [¡1; 1]!R is the Legendre polynomial of degree N . The resulting RKFR
scheme can be shown to be identical to the nodal RKDG scheme using Gauss-Legendre
nodes for solution points and quadrature. In the general class of [189], g2 correction
function of degree N + 1 corresponds to c=

2 (N +1)

(2N +1)N (aNN !)2
where aN is the leading

coefficient of LN; they are given by

gL(�) =
(¡1)N
2

�
LN (2 �¡ 1)¡

(N +1)LN¡1 (2 �¡ 1)+NLN+1 (2 �¡ 1)
2N +1

�
gR(�) =

1
2

�
LN (2 �¡ 1)+

(N +1)LN¡1 (2 �¡ 1)+NLN+1 (2 �¡ 1)
2N +1

� (3.20)

The resulting RKFR scheme can be shown to be identical to the nodal RKDG scheme
using Gauss-Lobatto-Legendre points as solution points and for quadrature. We will
perform a Fourier stability analysis of the Lax-Wendroff scheme based on these correc-
tion functions in a later section. Note that the correction functions are usually defined
in the interval [¡1; 1] but here we have written them for our reference interval which
is [0; 1].
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Chapter 4

Lax-Wendroff Flux Reconstruction

4.1. Introduction

In this chapter, we introduce the Lax-Wendroff (LW) scheme with the Flux Recon-
struction (FR) method used for spatial discretization, since each of these two methods
has the advantages discussed in the introduction. In brief, the advantage of Lax-
Wendroff schemes arises from their single stage nature which minimizes interelement
communication. The Flux Reconstruction is a quadrature free, vectorized scheme that
generalizes variants of Discontinuous Galerkin and spectral difference schemes. We use
the approximate Lax-Wendroff procedure of [208] so that, unlike the work of [122], the
method does not require using chain rule which can lead to complicated Jacobians. This
chapter uses discretization of the domain and function approximation by polynomials
presented in Section 3.1 for solving the hyperbolic conservation law (3.1). The one
dimensional Runge-Kutta Flux Reconstruction (RKFR) scheme from Section 3.4 is
used for motivation as we introduce the Lax-Wendroff FR (LWFR) method in Sec-
tion 4.2.

The numerical flux used on finite element interfaces has been improved for Lax-
Wendroff schemes. We introduce a D2 dissipation numerical flux that improves Fourier
CFL stability and EA flux that improves accuracy for nonlinear problems. The descrip-
tion of the numerical flux computation and how it improves over existing methods is
presented in Section 4.3. The Fourier stability analysis in 1-D to demonstrate enhance-
ment of CFL numbers is performed in Section 4.4. In Section 4.5, the treatment
of boundary conditions is described. This chapter uses TVD limiter for problems
with nonsmooth solution and it is described in Section 4.6. Sections 4.7, 4.8 present
some numerical results in 1-D for scalar and system problems, to demonstrate the
convergence rates and effect of correction functions, solution points and numerical flux
schemes. Section 4.9 presents the LW scheme in two dimensions and Sections 4.10, 4.11
present numerical results in two dimensions. Section 4.12 presents a summary of the
new scheme.

4.2. Lax-Wendroff FR scheme

In contrast to the spatial discretization described in Section 3.4, where a multistage
Runge-Kutta scheme was needed to obtain high order accuracy, the LWFR scheme
described here is a fully discrete high order scheme.
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The Lax-Wendroff scheme combines spatial and temporal discretization into a
single step. The starting point is a Taylor expansion in time following the Cauchy-
Kowalewski procedure where the PDE is used to rewrite some of the time deriv-
atives in the Taylor expansion as spatial derivatives. Using Taylor expansion in time
around t= tn, we can write the solution at the next time level as

un+1=un+
X
m=1

N+1
�tm

m!
@t
mun+O(�tN+2)

Since the spatial error is expected to be of O(�xN+1), we retain terms up to O(�tN+1)
in the Taylor expansion, so that the overall accuracy is of order N +1 both in space
and time. Using the PDE, @tu=¡@xf , we re-write time derivatives of the solution in
terms of spatial derivatives of the flux

@t
mu=¡@tm¡1 @xf =¡(@tm¡1 f)x; m=1; 2; : : :

so that

un+1 = un¡
X
m=1

N+1
�tm

m!
(@t

m¡1 f)x+O(�tN+2)

= un¡�t

"X
m=0

N
�tm

(m+1)!
@t
mf

#
x

+O(�tN+2)

= un¡�t @F
@x

(un)+O(�tN+2) (4.1)

where

F (u)=
X
m=0

N
�tm

(m+1)!
@t
mf(u)= f(u)+

�t
2
@tf(u)+ : : :+

�tN

(N +1)!
@t
Nf(u) (4.2)

Note that F (un) is an approximation to the time average flux in the interval [tn; tn+1]
since it can be written as

F (un)=
1
�t

Z
tn

tn+1
�
f(un)+ (t¡ tn) @tf(un)+ : : :+

(t¡ tn)N
N !

@t
Nf(un)

�
dt (4.3)

where the quantity inside the square brackets is the truncated Taylor expansion of the
flux f in time. Equation (4.1) is the basis for the construction of the Lax-Wendroff
method. Following the ideas in the RKFR scheme, we will first reconstruct the time
average flux F inside each element by a continuous polynomial Fh(�). Then truncating
equation (4.1), the solution at the nodes is updated by a collocation scheme as follows

ue;p
n+1=ue;p

n ¡ �t
�xe

dFh
d�

(�p); 0� p�N (4.4)

where ue;p are degrees of freedom of the approximate solution uh (3.3) which is degree
N in each finite element and is allowed to be discontinuous across element inter-
faces (Figure 3.1a). This is the single stage Lax-Wendroff update scheme for any order
of accuracy. The major work in the above scheme is involved in the construction of
the time average flux approximation Fh which is explained in subsequent sections.
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4.2.1. Conservation property
The computation of correct weak solutions for non-linear conservation laws in the
presence of discontinuous solutions requires the use of conservative numerical schemes.
The Lax-Wendroff theorem shows that if a consistent, conservative method converges,
then the limit is a weak solution. The method (4.4) is also conservative though it is
not directly apparent; to see this multiply (4.4) by the quadrature weights associated
with the solution points and sum overall the points in the eth element,

X
p=0

N

wpue;p
n+1=

X
p=0

N

wpue;p
n ¡ �t

�xe

X
p=0

N

wp
@Fh
@�

(�p)

The correction functions are of degree N +1 and the flux Fh is a polynomial of degree
�N +1. If the quadrature is exact for polynomials of degree at least N , which is true
for both GLL and GL points, then the quadrature is exact for the flux derivative term
and we can write it as an integral, which leads toZ


e

uh
n+1 dx=

Z

e

uh
ndx¡�t [Fe+ 1

2

¡Fe¡ 1

2

] (4.5)

This shows that the total �mass� inside the cell changes only due to the boundary fluxes
and the scheme is hence conservative.

4.2.2. Reconstruction of the time average flux
To complete the description of the LW method (4.4), we must explain the method for
the computation of the time average flux Fh. The flux reconstruction Fh(�) for a time
interval [tn; tn+1] is performed in three steps.

Step 1. Use the approximate Lax-Wendroff procedure to compute the time average
flux F at all the solution points

Fe;p�F (�p); 0� p�N (4.6)

The approximate LW procedure is explained in a subsequent section.

Step 2. Build a local approximation of the time average flux inside each element by
interpolating at the solution points

Fh
�(�)=

X
p=0

N

Fe;p `p(�) (4.7)

which however may not be continuous across the elements. This is illustrated in
Figure 3.1b.

Step 3. Modify the flux approximation Fh�(�) so that it becomes continuous across
the elements. Let Fe+ 1

2

be some numerical flux function that approximates the flux F

at x=xe+ 1

2

. Then the continuous flux approximation is given by

Fh(�)=
h
Fe¡ 1

2

¡Fh�(0)
i
gL(�)+Fh

�(�)+
h
Fe+ 1

2

¡Fh�(1)
i
gR(�) (4.8)
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which is illustrated in Figure 3.1b. The correction functions gL; gR are chosen from the
FR literature [94, 182, 189] (Section 3.4).

Step 4. Let F denote the values of time average flux approximation at solution
points (4.6). The derivatives of the continuous flux approximation at the solution
points can be obtained as

∂ξFh=
h
Fe¡ 1

2

¡VL
>F
i
bL+DF+

h
Fe+ 1

2

¡VR
>F
i
bR

bL=

2664 gL
0 (�0)

���
gL
0 (�N)

3775; bR=

2664 gR
0 (�0)

���
gR
0 (�N)

3775
which can also be written as

∂ξFh=Fe¡ 1

2

bL+D1F+Fe+ 1

2

bR; D1=D¡bLVL
>¡bRVR

> (4.9)

where VL;VR are Vandermonde matrices defined in (3.6) and D is the differentiation
matrix defined in (3.5). The quantities D; bL; bR; VL; VR can be computed once and
re-used in all subsequent computations. They do not depend on the element and
are computed on the reference element. Equation (4.9) contains terms that can be
computed inside a single cell (middle term) and those computed at the faces (first
and third terms) where it is required to use the data from two adjacent cells. The
computation of the flux derivatives can thus be performed by looping over cells and
then the faces. In the case of a system of equations, the differentiation matrices are
applied to each variable; see Appendix E for a performance efficient implementation
of these operations.

4.2.3. Direct flux reconstruction (DFR) scheme

An alternate approach to flux reconstruction which does not require the choice of a
correction function is based on the idea of direct flux reconstruction [147], which we
adopt in the Lax-Wendroff scheme as follows. Let us take the solution points to be the
N +1 Gauss-Legendre nodes, and define

�¡1=0; �N+1=1

The Lagrange polynomials corresponding to the N +3 points f�i; i=¡1; 0; : : : ;N +1g
are given by

~̀
j(�)=

Y
i=¡1;i=/ j

N+1
�¡ �i
�j¡ �i

2PN+2

We approximate the continuous flux in terms of these polynomials

Fh(�)=Fe¡ 1

2

~̀¡1(�)+
X
p=0

N

Fe;p ~̀p(�)+Fe+ 1

2

~̀
N+1(�)
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We can compute the spatial derivatives using a differentiation matrix D~ 2R(N+1)�(N+3)

D~pq= ~̀
q
0(�p); 0� p�N; ¡ 1� q�N +1

Define bL;bR to be the first and last column of the matrix D~ and D1 to be the remaining
columns

bL=D~(:,-1); bR=D~(:,N+1); D1=D~(0:N, 0:N)

The flux derivatives at all the solution points can be computed as follows

∂ξFh=Fe¡ 1

2

bL+D1F+Fe+ 1

2

bR

Note that the above equation has the same structure as (4.9) from the FR procedure
but bL; bR;D1 are obtained using different idea. In this DFR approach, we cannot use
GLL points since then the boundary points �¡1= �0, �N+1= �N would be repeated and
the Lagrange interpolation is not well-defined; if we use GL points, the resulting scheme
is identical to the LWFR approach using Radau correction function in combination
with GL points as solution points, as shown in Appendix C.

4.2.4. Approximate Lax-Wendroff procedure

The time average flux at the solution points Fe;p must be computed using (4.2). The
usual approach is to use the PDE and replace time derivatives with spatial derivatives,
but this leads to a large amount of algebraic computations since we need to evaluate
the flux Jacobian and its higher tensor versions. To avoid this process, we follow the
ideas in [208, 34] and adopt an approximate Lax-Wendroff procedure. To present this
idea in a concise and efficient form, we introduce the notation

u(m)=�tm @t
mu; f (m)=�tm @t

mf ; m=1; 2; : : :

The time derivatives of the solution are computed using the PDE

u(m)=¡�t @xf (m¡1); m=1; 2; : : :

Let the vector f below contain the flux values at solution points

fp=f(up)

The approximate Lax-Wendroff procedure uses a finite difference approximation applied
at the solution points to compute the time derivatives of the fluxes. For example,
a second order approximation is given by

ft(�; t)�
f(u(�; t+�t))¡ f(u(�; t¡�t))

2�t

The arguments to the flux are in turn approximated by a Taylor expansion in time

u(�; t��t)�u (�; t)�ut(�; t)�t
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Using this approximation at the pth solution point in an element, we get

fp
(1) = ft(�p; t)�t�

1
2
[f(up+up

(1))¡ f(up¡up
(1))]

up
(1) = ut(�p; t)�t=¡

�t
�xe

f�(�p; t)�¡
�t
�xe

(Df)p

It can be shown that the above approximation to ft is second order accurate in�t. Such
approximations can be written for higher accuracy and for higher time derivatives [208,
34], and we summarize them below at different orders of accuracy which are used
in this thesis. The neglected term in the Taylor expansion (4.2) is of O(�tN+1), and
hence the derivative approximation @t

m f must be computed to at least O(�tN+1¡m)
accuracy. The Lax-Wendroff procedure is applied in each element and so for sim-
plicity of notation, we do not show the element index in the following sub-sections.

4.2.4.1. Second order scheme, N =1

The time average flux at the solution points is given by

F=f+
1
2
f(1)

where

u(1) = ¡ �t
�xe

Df

f(1) =
1
2
[f (u+u(1))¡ f (u¡u(1))]

4.2.4.2. Third order scheme, N =2

The time average flux at the solution points is given by

F=f+
1
2
f(1)+

1
6
f(2)

where

u(1) = ¡ �t
�xe

Df

f(1) =
1
2
[f(u+u(1))¡ f(u¡u(1))]

u(2) = ¡ �t
�xe

Df(1)

f(2) = f

�
u+u(1)+

1
2

u(2)
�
¡ 2 f(u)+ f

�
u¡u(1)+

1
2

u(2)
�

4.2.4.3. Fourth order scheme, N =3

For the fourth order scheme, the time average flux at the solution points reads as

F=f+
1
2
f(1)+

1
6
f(2)+

1
24

f(3)
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where

u(1) = ¡ �t
�xe

Df

f(1) =
1
12

[¡f(u+2 u(1))+ 8 f(u+u(1))¡ 8 f(u¡u(1))+ f(u¡2 u(1))]
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��
4.2.4.4. Fifth order scheme, N =4

The time average flux at the solution points for the fifth order scheme takes the form

F=f+
1
2
f(1)+

1
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1
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f(3)+
1
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f(4)

where
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¡4 f
�

u¡u(1)+
1
2!

u(2)¡ 1
3!

u(3)+
1
4!

u(4)
�

+f

�
u¡2 u(1)+

22
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3!
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��
The above set of formulae shows the sequence of steps that have to be performed to
compute the time average flux at various orders. The arguments of the fluxes used on
the right hand side in these steps are built in a sequential manner. Note that all the
equations are vectorial equations and are applied at each solution point.

4.3. Numerical flux

The numerical flux couples the solution between two neighbouring cells in a discontin-
uous Galerkin type method. In RK methods, the numerical flux is a function of the
trace values of the solution at the faces. In the Lax-Wendroff scheme, we have con-
structed the time average flux at all the solution points inside the element and we want
to use this information to compute the time averaged numerical flux at the element
faces. The simplest numerical flux is based on Lax-Friedrich type approximation and
is given by [137]

Fe+ 1

2

=
1
2
[F

e+
1

2

¡ +F
e+

1

2

+ ]¡ 1
2
�e+ 1

2

[uh(xe+ 1

2

+ ; tn)¡uh(xe+ 1

2

¡ ; tn)] (4.10)

which consists of a central flux and a dissipative part. For linear advection equation
ut+ aux=0, the coefficient in the dissipative part of the flux is taken as �e+ 1

2

= jaj,
while for a non-linear PDE like Burgers' equation, we take it to be

�e+ 1

2

=max fjf 0(u�en)j; jf 0(u�e+1n )jg

where u�en is the cell average solution in element 
e at time tn, and will be referred
to as Rusanov or local Lax-Friedrich [152] approximation. Note that the dissipation
term in the above numerical flux is evaluated at time tn whereas the central part of
the flux uses the time average flux. Since the dissipation term contains the solution
difference at faces, we still expect to obtain optimal convergence rates, which is verified
in numerical experiments. This numerical flux depends on the following quantities:
fu�en;u�e+1n ;uh (xe+ 1

2

¡ ; tn);uh (xe+ 1

2

+ ; tn);Fe+ 1

2

¡ ;F
e+

1

2

+ g.

The numerical flux of the form (4.10) leads to somewhat reduced CFL numbers as
shown by Fourier stability analysis in a later section, and also does not have upwind
property even for linear advection equation. An alternate form of the numerical flux
is obtained by evaluating the dissipation term using the time average solution, leading
to the formula

Fe+ 1

2

=
1
2
[F

e+
1

2

¡ +F
e+

1

2

+ ]¡ 1
2
�e+ 1

2

[U
e+

1

2

+ ¡U
e+

1

2

¡ ] (4.11)

where

U =
X
m=0

N
�tm

(m+1)!
@t
mu=u+

�t
2
@tu+ : : :+

�tN

(N +1)!
@t
Nu (4.12)
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is the time average solution. In this case, the numerical flux depends on the following
quantities: fu�en;u�e+1n ;U

e+
1

2

¡ ;U
e+

1

2

+ ;F
e+

1

2

¡ ;F
e+

1

2

+ g. We will refer to the above two forms

of dissipation as D1 and D2, respectively. The dissipation model D2 is not compu-
tationally expensive compared to the D1 model since all the quantities required to
compute the time average solution U are available during the Lax-Wendroff procedure.
Some numerical fluxes for the case of systems of hyperbolic equations are described
in Appendix D. It remains to explain how to compute F

e+
1

2

� appearing in the central

part of the numerical flux, which can be accomplished in two different ways, which we
term AE and EA in the next two sub-sections.
Remark 4.1. In case of constant linear advection equation, ut+aux=0, f (m)=au(m)

so that Fe;p= aUe;p. Then, since �e+ 1

2

= jaj, the numerical flux (4.11) becomes the
upwind flux

Fe+ 1

2

=

8>><>>:
Fh
�(x

e+
1

2

¡ ); a� 0

Fh
�(x

e+
1

2

+ ); a< 0

but the flux (4.10) does not have this upwind property. For a variable coefficient
advection problem with flux f =a(x)u, we get Fpe=a(xp)Up

e, the numerical flux (4.11)
is

Fe+ 1

2

=
1
2
[F

e+
1

2

¡ +F
e+

1

2

+ ]¡ 1
2
ja(xe+ 1

2

)j [U
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1

2

+ ¡U
e+

1

2

¡ ] (4.13)

which does not reduce to an upwind flux due to interpolation errors, though it will be
close to it in the well resolved cases. In this case, we can define the upwind numerical
flux as

Fe+ 1

2

=

8>><>>:
F
e+

1

2

¡ ; a(xe+ 1

2

)� 0

F
e+

1

2

+ ; a(xe+ 1

2

)< 0
(4.14)

which is defined in terms of the time average flux only and does not make use of the
solution.
Remark 4.2. For non-linear problems, we can also consider the global Lax-Friedrich
and Roe type dissipation models which are given by

�e+ 1

2

=�=max
e
jf 0(u�e)j; �e+ 1

2

=
������f 0�u�e+u�e+1

2

�������
respectively. In the global Lax-Friedrich flux, the maximum is taken over the whole
grid. For Burgers' equation, we can consider an Osher type flux [74] which is given by

Fe+ 1

2

=

8>>>>>>>>>>>><>>>>>>>>>>>>:

F
e+

1

2

¡ u�e;u�e+1> 0

F
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1

2

+ u�e;u�e+1< 0

F
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1

2

¡ +F
e+

1

2

+ u�e� 0�u�e+1

0 otherwise
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4.3.1. Numerical flux � average and extrapolate to face (AE)

In each element, the time average flux Fh� has been constructed using the Lax-Wendroff
procedure. The simplest approximation that can be used for F

e+
1

2

� in the central part

of the numerical flux is to extrapolate the flux Fh� to the faces,

F
e+

1

2

� =Fh
�(x

e+
1

2

� )

We will refer to this approach with the abbreviation AE. However, as shown in the
numerical results, this approximation can lead to sub-optimal convergence rates for
some non-linear problems. Hence we propose another method for the computation of
the inter-cell flux which overcomes this problem as explained next.

4.3.2. Numerical flux � extrapolate to face and average (EA)

Instead of extrapolating the time average flux from the solution points to the faces,
we can instead build the time average flux at the faces directly using the approximate
Lax-Wendroff procedure that is used at the solution points. The flux at the faces is
constructed after the solution is evolved at all the solution points. In the following
equations, � denotes either the left face (L) or the right face (R) of a cell. For �2fL;
Rg, we compute the time average flux at the faces of the e'th element by the following
steps, where we suppress the element index since all the operations are performed inside
one element.

Degree N =1 Degree N =2
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Degree N =4
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We see that the solution is first extrapolated to the cell faces and the same finite differ-
ence formulae for the time derivatives of the flux which are used at the solution points,
are also used at the faces. The numerical flux is computed using the time average flux
built as above at the faces; the central part of the flux F

e+
1

2

� in equations (4.10), (4.11)
are computed as

F
e+

1

2

¡ =(FR)e; F
e+

1

2

+ =(FL)e+1

We will refer to this method with the abbreviation EA.
Remark 4.3. The two methods AE and EA are different only when there are no
solution points at the faces. E.g., if we use GLL solution points, then the two methods
yield the same result since there is no interpolation error. For the constant coefficient
advection equation, the above two schemes for the numerical flux lead to the same
approximation but they differ in case of variable coefficient advection problems and
when the flux is non-linear with respect to u. The effect of this non-linearity and the
performance of the two methods are shown later using some numerical experiments.

4.4. Fourier stability analysis in 1-D
We now perform Fourier stability analysis of the LW schemes applied to the linear
advection equation ut+ a ux= 0 where a is the constant advection speed. We will
assume that the advection speed a is positive and denote the CFL number by

�=
a�t
�x

Since f (m)= a u(m), the time average flux at all the solution points is given by

Fe=aUe where Ue=Tue and T=
X
m=0

N
1

(m+1)!
(¡� D)m

Then the discontinuous flux at the cell boundaries are given by

Fh
�(x

e¡ 1

2

+ )=VL
>Fe; Fh

�(x
e+

1

2

¡ )=VR
>Fe
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We can write the update equation in the form

ue
n+1=¡�A¡1ue¡1n +(I¡�A0)uen¡�A+1ue+1n (4.15)

where the matrices A¡1; A0; A+1 depend on the choice of the dissipation model in
the numerical flux. The EA and AE schemes for the flux are identical for this linear
problem, and hence we do not make any distinction between them for Fourier stability
analysis.

Dissipation model D1. The numerical flux is given by

Fe+ 1

2

=
1
2
[VR
>Fe+VL

>Fe+1]¡
1
2
a (VL

>ue+1¡VR
>ue)

Since the flux difference at the faces is

Fe¡ 1

2

¡Fh�(xe¡ 1

2

+ )=
1
2
aVR

>(T+I)ue¡1¡
1
2
aVL

>(T+I)ue

Fe+ 1

2

¡Fh�(xe+ 1

2

¡ )=
1
2
aVL

>(T¡I)ue+1¡
1
2
aVR

>(T¡I)ue

the flux derivative at the solution points is given by

@�Fh =
1
2
a bLVR

>(T+I)ue¡1+
�
aDT¡1

2
a bLVL

>(T+I)¡ 1
2
a bRVR

>(T¡I)
�
ue

+
1
2
a bRVL

>(T¡I)ue+1

Thus the matrices in (4.15) are given by

A¡1=
1
2
bLVR

>(T+I); A+1=
1
2
bRVL

>(T¡I); A0=DT¡1
2
bLVL

>(T+I)¡ 1
2
bRVR

>(T¡I)

Dissipation model D2. Since a> 0, the numerical flux is given by

Fe+ 1

2

=VR
>Fe=aVR

>Tue

and the flux differences at the face are

Fe¡ 1

2

¡Fh�(xe¡ 1

2

+ )= aVR
>Tue¡1¡aVL

>Tue; Fe+ 1

2

¡Fh�(xe+ 1

2

¡ )= 0

so that the flux derivative at the solution points is given by

@�Fh=(aVR
>Tue¡1¡aVL

>Tue)bL+aDTue=a bLVR
>Tue¡1+a (DT¡bLVL

>T)ue

Thus the matrices in (4.15) are given by

A¡1=bLVR
>T; A0=DT¡bLVL

>T; A+1=0

The upwind character of the flux leads to A+=0 and the right cell does not appear in
the update equation.

Stability analysis. We assume a solution of the form uen=ûk
nexp (ik xe) where i=

¡1
p

, k is the wave number and ûk
n2RN+1 are the Fourier amplitudes; substituting

this ansatz in (4.15), we find that the amplitudes evolve according to the equation

ûk
n+1=H(�; �) ûk

n; H=I¡� A0¡� A¡1exp (¡i�)¡� A+1exp (i�); �= k�x
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where � is the non-dimensional wave number. The eigenvalues of H depend on the CFL
number � and the non-dimensional wave number �, i.e., �=�(�;�); for stability, all the
eigenvalues of H must have magnitude less than or equal to one for all �2 [0; 2�], i.e.,

�(�)=max
�
j�(�; �)j � 1

The CFL number is the maximum value of � for which the above stability condition
is satisfied. This CFL number is determined approximately by sampling in the wave
number space; we partition �2 [0; 2�] into a large number of uniformly spaced points
�p and determine

�(�)=max
p
j�(�; �p)j

The values of � are also sampled in some interval [�min; �max] and the largest value
of �l2 [�min; �max] for which �(�l)� 1 is determined in a Python code. We start with
a large interval [�min; �max] and then progressively reduce the size of this interval so
that the CFL number is determined to about three decimal places. The results of this
numerical investigation of stability are shown in Table 4.1 for two correction functions
and different polynomial degrees.

N Radau g2
D1 D2 Ratio D1 D2 Ratio

1 0.226 0.333 1.47 0.465 1.000 2.15
2 0.117 0.170 1.45 0.204 0.333 1.63
3 0.072 0.103 1.43 0.116 0.170 1.47
4 0.049 0.069 1.40 0.060 0.103 1.72

Table 4.1. CFL numbers for 1-D LWFR using the two dissipation models and correction functions

We see that dissipation model D2 has a higher CFL number compared to dissipation
model D1. The CFL numbers for the g2 correction function are also significantly
higher than those for the Radau correction function. The LWFR scheme with Radau
correction function is identical to DG scheme and the CFL numbers found here agree
with those from the ADER-DG scheme [63, 76]. The optimality of these CFL numbers
has been verified by experiment on the linear advection test case (Section 4.7.1), i.e.,
the solution eventually blows up if the time step is slightly higher than what is allowed
by the CFL condition.

4.5. Boundary conditions

The boundary conditions for hyperbolic problems are usually implemented in a weak
manner through the fluxes (4.11). We explain the implementation for the 1-D scheme
which is applied to higher dimensions across normal direction. Consider a grid f
ege=1M

where 
1; 
M are the left, right boundary elements. In some cases, the boundary
conditions are enforced by the choice of ghost values which are F

M+
1

2

+ ;U
M+

1

2

+ ;u�M+1

for the right boundary and F1

2

¡;U1

2

¡;u�0 for the left boundary. Here we describe the
treatment in various cases.
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Periodic boundary.

F
M+

1

2

+ ;U
M+

1

2

+ ;u�M+1 = F1

2

+;U1

2

+;u�1

F1

2

¡;U1

2

¡;u�0 = F
M+

1

2

¡ ;U
M+

1

2

¡ ;u�M

The numerical flux at boundary face can now be computed with (4.11).

Dirichlet/Inflow boundary. The boundary condition on the solution can be spec-
ified only at inflow boundaries, i.e., where the characteristics are entering the domain.
For example, at the left boundary of the domain, say x1/2=0, the boundary condition
can be specified if f 0> 0 for a scalar problem and if eigenvalues of f 0 are positive
for system of equations. Assuming this is the case for our problem, let the boundary
condition be given as u(0; t)= g(t). It will be enforced by defining an upwind numerical
flux at the boundary face, which is given by

F1

2

=F1

2

¡� 1
�t

Z
tn

tn+1

f(g(t)) dt

If the integral cannot be computed analytically, then it is approximated by quadrature
in time. From (4.3), we see that integral must be at least accurate to O(�tN+1) which
is of the same order as the neglected terms in (4.3). In the numerical tests, we use
(N + 1)-point Gauss-Legendre quadrature which ensures the required accuracy. In
this case, we specify the numerical flux at boundary face directly, and do not need to
compute the numerical flux using (4.11).

Outflow boundary. The right boundary is an outflow boundary if eigenvalues of f 0

are positive. In this case, the flux across the right boundary is computed in an upwind
manner using the interior solution, i.e., FM+1/2= FM+1/2

¡ where FM+1/2
¡ is obtained

from the Lax-Wendroff procedure.

Numerical flux for boundaries. There are cases when the characteristics are a
mix of inflow and outflow, and it is known that the inflow is given by a function g(t).
In these cases, we use an upwind numerical flux like Roe (Appendix D) which will
distinguish between inflow and outflow characteristics. We explain the treatment for
the left boundary, say x1/2=0. The time averaging of inflow quantities is performed
to obtain the ghost values as follows

F1

2

¡� 1
�t

Z
tn

tn+1

f(g(t)) dt; U1

2

¡� 1
�t

Z
tn

tn+1

g(t) dt; u�0=u�1

Then, the numerical flux at x1/2 is computed as in (4.11) but now with an upwind flux
from Appendix D.

Solid wall / reflective boundaries. This is a type of boundary condition for com-
pressible Euler's equations (4.16). The velocity at a solid wall interface, say x1/2, is set
to zero. To satisfy the property in the numerical flux, we reflect the velocity along the
origin in the ghost values. For brevity, we define F ;U ;u :=F1

2

+;U1

2

+;u�1 and set the
ghost values as follows

F1

2

¡=(¡F1;¡F2;F3); U1

2

¡=(U1;¡U2;U3); u�0=(u1;¡u2;u3)
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Then, the numerical flux at x1/2 is computed as in (4.11).

4.6. TVD limiter

The computation of discontinuous solutions with high order methods can give oscil-
latory solutions which must be limited by some non-linear process. The a posteriori
limiters developed in the context of RKDG schemes [52, 51] can be adopted in the
framework of LWFR schemes. The limiter is applied in a post-processing step after
the solution is updated to the new time level. The limiter is thus applied only once
for each time step unlike in RKDG scheme where it has to be applied after each RK
stage update. Let uh(x) denote the solution at time tn+1. In element 
e, let the average
solution be u�e; define the backward and forward differences of the solution and cell
averages by

�¡ue=u�e¡uh(xe¡ 1

2

+ ); �+ue=uh(xe+ 1

2

¡ )¡u�e

�¡u�e=u�e¡u�e¡1; �+u�e=u�e+1¡u�e

We limit the solution by comparing its variation within the cell with the difference of
the neighbouring cell averages through a limiter function,

�¡ue
m=minmod(�¡ue;�¡u�e;�+u�e); �+ue

m=minmod(�+ue;�
¡u�e;�

+u�e)

which is defined for each component as

minmod(a; b; c)=
�
smin (jaj; jbj; jcj); if s= sign(a)= sign(b)= sign(c)
0; otherwise

If �¡uem=/ �¡ue or �+ue
m=/ �+ue, then the solution is deemed to be locally oscillatory

and we modify the solution inside the cell by replacing it as a linear polynomial with
a limited slope, which is taken to be the average limited slope. The limited solution
polynomial in cell 
e is given by

uhj
e=ue+
�¡ue

m+�+ue
m

2
(2 �¡ 1); � 2 [0; 1]

This limiter is known to clip smooth extrema since it cannot distinguish them from
jump discontinuities. A small modification based on the idea of TVB limiters [52] can
be used to relax the amount of limiting that is performed which leads to improved
resolution of smooth extrema. The minmod function is replaced by

minmod(a; b; c)=

(
a; jaj �M �x2

minmod(a; b; c); otherwise

which requires the choice of a parameter M , which is an estimate of the second deriva-
tive of the solution at smooth extrema. In the case of systems of equations, the limiter
is applied to the characteristic variables, which is known to yield better control on the
spurious numerical oscillations [50]. The limiters used in this chapter are not able to
provide high order accuracy and the development of better limiters, with the idea of
a subcell based scheme, is discussed in Chapter 5.
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Remark 4.4. For Runge-Kutta FR/DG schemes with a monotone numerical flux,
the limiters of [50] can be used to obtain a Total Variation Diminishing (TVD) in
means property. Although such a property cannot be shown for the LWFR scheme,
the numerical results with the TVB limiter are similar for RKFR and LWFR schemes.

4.7. Numerical results in 1-D: scalar problems

In this section, we present some numerical results to show the convergence rates and the
comparison of different scheme parameters like correction function, solution points and
dissipation model. For each problem in this section, the corresponding CFL number
is chosen from Table 4.1. Here after, when we use the CFL numbers obtained using
the Fourier stability analysis, we multiply it with a safety factor of 0.95. When D1
and D2 schemes are compared together, the CFL numbers of D1 schemes are used as
these are lower; the same CFL numbers are used for the RKFR schemes. Up to degree
N =3, RKFR schemes use Runge-Kutta time integration of order N +1 with N +1
stages. In the N =4 case, for non-linear problems there is no five stage Runge-Kutta
method of order 5, see Chapter 32 of [35]. However, for linear, autonomous problems,
the five stage SSPRK method in [82] is fifth order accurate, and we make use of it for
the constant advection test cases with periodic boundary conditions and refer to it as
SSPRK55. For non-linear or non-periodic problems, to make a fair comparison of LW
and RK, we make use of the six stage, fifth order Runge-Kutta (RK65) time integration
introduced in [183].

The RKFR and LWFR schemes are illustrated at a high level in Algorithm 4.1 and
Algorithm 4.2, respectively, for solving a hyperbolic conservation law in a time interval
[0; T ]. Here we assume that an a posteriori limiter like a TVD/TVB limiter and a
positivity limiter are applied in a post-processing step after the solution is updated.
The LWFR scheme requires the application of the limiter only once per time step
while the RKFR scheme requires multiple applications of the limiter depending on
the number of RK stages. The limiter can be costly to apply for systems of equations
where a characteristic approach and/or WENO-type limiter is used. In the present
work, we use a simple TVD/TVB limiter but use characteristic limiting for systems.

Algorithm 4.1

Runge-Kutta Flux Reconstruction
t=0;
while t<T do6666666666666666666666664

for each RK stage do666666666666664
Loop over cells and assemble rhs;
Loop over faces and assemble rhs;
Update solution to next RK stage;
Apply a posteriori limiter;
Apply positivity limiter;

t= t+�t;
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Algorithm 4.2

Lax-Wendroff Flux Reconstruction
t=0;
while t<T do666666666666666666664

Loop over cells and assemble rhs;
Loop over faces and assemble rhs;
Update solution to next time step;
Apply a posteriori limiter;
Apply positivity limiter;
t= t+�t;

4.7.1. Linear advection equation: constant speed

We first consider the 1-D linear advection equation ut+ a ux=0 with speed a=1 and
periodic boundary condition.

4.7.1.1. Smooth solutions

For the initial condition u(x; 0) = sin(2 � x) with periodic boundaries on [0; 1], we
perform grid convergence studies using various parameters like correction functions
and solution points. The error norms are computed at time t=2 units. In Figure 4.1
we compare the convergence behaviour for Radau and g2 correction functions and for
both choices of solution points using the D2 dissipation model. It is clear that the
errors due to Radau are consistently smaller than those with g2 correction function.
The choice of the solution points does not significantly affect the error in the solution.

15 30 60 120
Number of cells

10 10

10 8

10 6

10 4

10 2

L2  
E

rr
or

LW, GL, D2

Radau
g2
N + 1

15 30 60 120
Number of cells

10 10

10 8

10 6

10 4

10 2

L2  
E

rr
or

LW, GLL, D2

Radau
g2
N + 1

(a) (b)

Figure 4.1. Error convergence for constant linear advection; (a) GL points, (b) GLL points. The
different colors correspond to degrees N =1; 2; 3; 4 from top to bottom.
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Figure 4.2 shows the comparison of LW and RK schemes using Radau correction
and two types of solution points. There is a small difference in the error levels between
the two dissipation models, with the D2 model performing better for odd N . The RK
scheme has slightly smaller errors than the LW scheme. We can see this more clearly
by plotting the error norm versus time as shown in Figure 4.3, where all the four
degrees consist of the same number of total dofs which is 200. We see that the error
growth with time is higher for the LW scheme than for the RK scheme. The superior
performance of the RK scheme is already known in the literature [84] and is due to
its super-convergence properties. It is possible to construct LW schemes that are also
super-convergent as done in [84] but the resulting schemes are computationally more
expensive as they involve a stronger coupling with the neighbouring cell solutions, than
what is used in the standard LW schemes. Hence we do not pursue that approach for
our LW schemes. Note that this super-convergence occurs for constant coefficient linear
problems on uniform grids and these advantages of RK schemes are not present when
we consider non-linear problems, as shown in later results.
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Figure 4.2. Error convergence for constant linear advection; (a) GL points , (b) GLL points. The
different colors correspond to degrees N =1; 2; 3; 4 from top to bottom.

Figure 4.4 analyzes the behaviour of L2 norm of the solution where we plot the
relative change in the L2 norm with respect to the initial value, defined as kuh(t)k2�=
kuh(t)k2¡kuh(0)k2

kuh(0)k2
. For N =1, we see that LW is less dissipative than RK and thus better

at conserving energy while for N = 2; 3, RK schemes perform better. For N = 4, we
see a mild instability for both LWFR and RKFR schemes. For N =4, we compare LW
with SSPRK55 which is fifth order only for linear problems and SSPRK54 [167], which
is more relevant for non-linear problems and is fourth order accurate. Choosing time
step size by CFL numbers of the LW-D1 scheme, we observe the mild instability for
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both the time integration schemes. The instability of RKDG scheme has been studied
in [198] which can be remedied by using an RK scheme with different number of stages;
however the use of six stage RK65 method with a limiter may dampen the solution
too much, as we discuss later in Figure 4.11. The solution norm grows linearly, with
a very small slope for both LW-D1 and LW-D2 (approximately 6.177e-10 and 5.415e-
10) schemes, and also for SSPRK54 and SSPRK55 (approximately 2.862e-13, 1.908e-
13) schemes. This type of mild instability for N =4 seems to be present in other single
step methods like ADER-DG schemes also.
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Figure 4.3. Error versus time for constant linear advection ut + ux = 0, initial condition
u(x; 0)= sin(2�x), x 2 [0; 1], periodic boundary conditions, for different polynomial degrees, each
with 200 degrees of freedom (dofs); GL solution points and Radau correction. (a) N =1, (b) N =
2, (c) N =3, (d) N =4.
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Figure 4.4. Semi-log plot of relative change in L2 norm versus time for constant linear advection
with the initial condition u(x; 0)= sin(2�x); x2[0; 1] for different polynomial degrees, each with 200
dofs; GL solution points and Radau correction.

We now solve the problem with the same initial condition but using Dirichlet
boundary condition at the left side of the domain; the exact solution remains same as
before. The fifth order SSPRK scheme of [82] is only for autonomous systems, so here
we use RK65 [183] for N = 4. Figure 4.5a shows the error convergence when we use
the CFL of LW-D1 scheme for all schemes, since this is the smallest. All the schemes
show optimal convergence rates with the LW-D2 and RK schemes showing very similar
errors. In Figure 4.5b, we perform the same error convergence study but using the
stable CFL number of each scheme; we still observe optimal convergence rates in each
scheme, but the RK scheme shows slightly larger errors at degrees N = 3; 4, when
the error level has become small. The issue with RK schemes may be related with
the way Dirichlet conditions are implemented inside the RK stages as studied in [38].
Figure 4.6 shows the time history of the relative change in L2 norm of the numerical
solution; for degrees N =1; 2 the norm does not increase relative to the initial value
but for degrees N =3; 4, there is some increase in the norm at initial times for some
schemes. In Figure 4.6, we also make comparison of LW and RK for N =4, with RK
time integration performed with SSPRK54 [167]. However, in all cases, the norm does
not grow monotonically but reaches a periodic oscillatory behaviour. Unlike the case
of periodic boundary conditions, the inflow and outflow boundary conditions may lead
to increase and decrease in energy respectively; if the two mechanisms aren't exactly
balanced, we can observe the oscillatory behaviour in the solution norm.
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Figure 4.5. Convergence for constant linear advection with Dirichlet boundary conditions; (a) using
CFL numbers of LW-D1 for all schemes, (b) using corresponding CFL number for each scheme. The
different colors correspond to degrees N = 1, 2, 3, 4 from top to bottom.

0.0 2.5 5.0 7.5 10.0 12.5 15.0
t

10 4

10 5

10 6

10 7

10 8

||u
h(

t)|
|* 2

N = 1, GL, Radau

LW-D1
LW-D2
RK

0.0 2.5 5.0 7.5 10.0 12.5 15.0
t

10 6

10 7

10 8

||u
h(

t)|
|* 2

N = 2, GL, Radau

LW-D1
LW-D2
RK

(a) (b)

0.0 2.5 5.0 7.5 10.0 12.5 15.0
t

10 9

10 11

10 13

10 15
0

10 15

10 13

10 11

10 9

||u
h(

t)|
|* 2

N = 3, GL, Radau

LW-D1
LW-D2
RK

0.0 2.5 5.0 7.5 10.0 12.5 15.0
t

10 13

10 15

0
10 15

10 13

10 11

10 9

||u
h(

t)|
|* 2

N = 4, GL, Radau

LW-D1
LW-D2
SSPRK54
RK65

(c) (d)

Figure 4.6. Semi-log plot of relative change in L2 norm versus time for constant linear advection,
with initial condition u(x; 0)= sin(2 � x); x2 [0; 1] together with Dirichlet boundary conditions, for
different polynomial degrees, each with 200 dofs; GL solution points and Radau correction.
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Next we perform error convergence studies for an initial condition of a wave packet
given by u(x; 0) = e¡10x

2
sin (10 � x) with periodic boundary conditions. This initial

condition has a more broadband Fourier spectrum than the previous case which had
only one Fourier mode. Figure 4.7 shows the solutions obtained for N =3; 4 and using
200 dofs in each case. The solutions are more accurate in case of N =4 compared to
N =3 showing the benefits of a higher order method. We see that RK schemes are able
to capture the peak solution more accurately than LW schemes, especially in case of
N =3, but the difference between the two schemes reduces for N =4 case. Figure 4.8
shows the error convergence plot with GL points; as before, we see that RK schemes
show smaller errors than the LW schemes due to their super-convergence property. For
odd degrees, the D2 dissipation has slightly smaller errors than the D1 model, while
for even degrees, the difference between the two models is negligible.
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Figure 4.7. Constant linear advection of a wave packet; solution at time t=1 with 160 dofs using
polynomial degree (a) N=3, (b) N=4.
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Figure 4.8. Error convergence for constant linear advection of a wave packet; (a) GL points, (b)
GLL points. The different colors correspond to degrees N=1; 2; 3; 4 from top to bottom.
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4.7.1.2. Non-smooth solutions

If the initial condition is not smooth and has a jump discontinuity, then high order
methods will generate oscillatory solutions due to the non-monotone property of the
schemes. For such problems, we need some form of limiter to control the oscillations and
we use the TVB-type limiters which are applied in an a posteriori manner as explained
in Section 4.6. Consider the initial condition consisting of a square hat function,

u(x; 0)=

�
1; x2 (0.25; 0.75)
0; x2 [0; 0.25)[ (0.75; 1]

and which is extended by periodicity. We compute the solution up to the time t=1 unit
when the solution returns to its initial position. Figure 4.9 shows the solutions obtained
with degree N =3; 4 and without applying any limiter. We observe oscillations in case
of N =3 but no significant oscillations are seen for the N =4 case. The oscillations are
however localized around the discontinuity and do not corrupt the rest of the solution.
When TVB limiter is applied, these oscillations disappear as seen in Figure (4.10)
but the jumps are smeared over more cells. If we use the RK65 scheme which is fifth
order accurate but has six stages, then the results are shown in Figure (4.11) where
we observe increased smearing of the jump in the RK scheme. Overall, we see that the
limiter smears the discontinuity over a few cells in case of both LW and RK schemes;
but we also observe that the solutions obtained with the LW schemes are very similar
to the RK schemes.
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Figure 4.9. Constant linear advection of hat profile without limiter. The solution is shown at time
t = 1 with 200 dofs using polynomial degree (a) N=3, (b) N=4.
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Figure 4.10. Constant linear advection of hat profile with TVB limiter (M=100). The solution is
shown at time t=1 and 200 dofs using polynomial degree (a) N=3, (b) N=4.
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Figure 4.11. Constant linear advection of hat profile with TVB limiter (M=100) where Runge-
Kutta time integration is performed using RK65 [183]. The solution is shown at time t=1 and 200
dofs using polynomial degree N=4.

We next consider a composite signal consisting of profiles with different levels of
smoothness whose initial condition is a slightly different version of [98] given by

u(x; 0)=

8>>>>>>>>>><>>>>>>>>>>:
G (x; �; z); ¡0.8�x�¡0.6
1; ¡0.4�x�¡0.2
1¡ j10 (x¡ 0.1)j; 0�x� 0.2
F (x; �; a); 0.4�x� 0.6
0; elsewhere

where G(x; �; z)= e¡�(x¡z)
2
, F (x;�; a)= 1¡�2 (x¡ a)2

p
with the constants a= 0.5,

z =¡0.7, � = 0.005, �= 10 and � =
log2
36�2 . This initial condition is composed of the

succession of a Gaussian, rectangular, triangular and parabolic signals. We compute
the numerical solutions at t=8 (after 4 periods) and for degrees N =3; 4 but with 400
dofs in total for each case. The results without any limiter are shown in Figure 4.12;
the profiles which are more regular are captured accurately by the numerical schemes,
while the hat profile shows some oscillations. These oscillations are larger for N = 3
than for N =4 case.
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Figure 4.12. Constant linear advection of a composite profile without limiter. The solution is
shown at time t=8 using 400 dofs in each case and polynomial degree (a) N=3, (b) N=4.

When the TVB limiter is used, the corresponding solutions are shown in Figure 4.13.
Now the oscillations in the hat profile are controlled but there is more numerical
dissipation as is evident in the reduced amplitude of the smooth profiles. We observe
that the results from the LW scheme are very similar to those of the RK scheme.
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Figure 4.13. Constant linear advection of a composite profile with TVB limiter (M=50). The
solution is shown at time t=8 using 400 dofs in each case and polynomial degree (a) N=3, (b) N=4.

4.7.2. Linear equation with variable coefficient
Now we consider the linear equation with spatially varying coefficient which is given by

ut+ f(x; u)x=0; f(x; u)= a(x)u

This problem is non-linear in the spatial variable, i.e., if Ih is the interpolation operator,
then Ih (a uh) =/ Ih(a) Ih(uh). This can lead to different behaviour of the numerical
schemes compared to the linear case, depending on AE and EA methods for the
numerical flux. To study the effect of non-linearity, we consider different types of speeds
with different degree of non-linearity from [131].

Figure 4.14 shows the error convergence for the AE and EA schemes, and for the
speed a(x)=x with initial condition u0(x)= sin(12 (x¡ 0.1)). The domain is [0.1; 2�]
and we use Dirichlet boundary conditions at x=0.1 and outflow condition at x=2� so
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that the exact solution is given by u (x; t)=e¡tu0(xe¡t). As mentioned earlier, upwind
flux is used to enforce the boundary condition at inflow boundaries. The LW scheme
with either AE or EA method yields correct convergence rates, while the RK scheme
exhibits a small super-convergence. Figure 4.14c shows that the error levels with AE
and EA are nearly same. The non-linearity in this problem is small enough that it
does not spoil the error and convergence behaviour of the LW schemes, for both AE
and EA methods.
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Figure 4.14. Error convergence for variable linear advection with a(x)=x: (a) AE scheme, (b) EA
scheme, (c) AE vs EA.

Figure 4.15 shows the error convergence for the AE and EA schemes, and for the
non-linear speed a(x)=x2, with initial condition u0(x)=cos(�x/2). The domain is [0.1;
1], and we use Dirichlet boundary conditions at x= 0.1 which is an inflow boundary,
and outflow condition at x=1 so that the exact solution is given by u(x; t)=u0(x/(1+
tx))/(1+ tx)2. For odd degrees, the LW scheme withAE shows larger errors compared
to the RK scheme though the convergence rate is optimal. The LW scheme with EA
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shown in Figure 4.15b, is as accurate as the RK scheme at all degrees. Figure 4.15c
compares AE and EA schemes using GL solution points, Radau correction function
and D2 dissipation; we clearly see that EA scheme has smaller errors than AE scheme
at odd degrees, while they are very similar for even degrees. Figure 4.16 shows the error
versus time plots for degrees N =3; 4; we see that the LW and RK schemes have very
similar error levels and the superior performance of RK schemes observed for constant
linear advection is not realized in this non-linear case.

We have observed the same behaviour in all other non-linear test cases given in [131]
but the results are not shown here, i.e., the LW schemes with EA perform at par with
RK schemes for non-linear problems.
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Figure 4.15. Error convergence for variable linear advection with a(x)=x2: (a) AE scheme, (b)
EA scheme, (c) AE vs EA.
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Figure 4.16. Error versus time for linear advection with wave speed a(x)=x2 for different polyno-
mial degrees; GL solution points, Radau correction and polynomial degree (a) N=3, (b) N=4.

4.7.3. Inviscid Burgers' equation

The one dimensional Burgers' equation is a conservation law of the form ut+ f(u)x=
0 with the quadratic flux f(u) = u2/2. For the smooth initial condition u (x; 0) =
0.2 sin (x), we compute the numerical solution at different times t2f2.0; 4.5; 8.0g with
periodic boundary condition in the domain [0; 2 �]. The TVB limiter with parameter
M = 1 is used. A stationary discontinuity is formed at x= � and time tc= 5. The
solutions are shown in Figure 4.17 for degree N=3 and compared with the results from
the RK method. We see that the discontinuity is captured accurately and without any
oscillations, and the LW results compare very well with the RK results.
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Figure 4.17. Solution of 1-D Burgers' equation with N =3 and 100 cells at different time instants
(a) t=4.5, (b) t=8. TVB limiter (M =1) is used. The reference solution is computed using RKFR,
degree N =1, on a mesh of 3500 cells.

At time t= 2, the solution is still smooth and we can obtain the exact solution,
using which, error norms and convergence rates can be estimated, see Figure 4.18.
Figure 4.18a compares the error norms for the AE and EA methods for the Rusanov
numerical flux, and using GL solution points, Radau correction and D2 dissipation; at
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odd degrees, the convergence rate of AE is less than optimal and close to O(hN+1/2),
while at even degrees, we obtain the optimal O(hN+1) rate. In Figure 4.18b, we see that
error norms of LW-EA and RK schemes are very close. In Figure 4.18c, we compare
the two correction functions using the EA scheme and Rusanov flux; it is clear that
the errors with Radau correction are significantly smaller than those with g2 correction.
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Figure 4.18. Error convergence for 1-D Burgers' equation at time t=2. (a) AE vs EA, (b) Radau
vs g2, EA scheme, (c) LW-EA vs RK.

Next, we study the effect of different numerical fluxes in Figure 4.19 for odd degrees
N =1;3. With the AE scheme, only the global Lax-Friedrich flux is able to achieve the
correct convergence rates and has the smallest errors compared to other fluxes which is
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a surprising result since it is a very dissipative flux. When the EA scheme is used as
shown in the right of Figure 4.19, all the numerical fluxes perform very similarly and
achieve the optimal convergence rate. An examination of the error distribution in space
shows that the AE scheme in combination with any numerical flux other than global
Lax-Friedrich, produces large errors around the region of sonic points where f 0(u)=0;
however this happens only for odd degrees and the reason for this behaviour is not
known at present. For initial data where the solution does not have a sonic point as
in Example 2 of [122], we get optimal convergence rates for all degrees even with the
AE scheme.
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Figure 4.19. Error convergence for 1-D Burgers' equation at time t=2; effect of numerical fluxes
for N =1; 3. (a) AE scheme, (b) EA scheme.

4.7.4. Non-convex problem: Buckley-Leverett equation

We consider the Buckley-Leverett equation ut + f(u)x = 0, where the flux f(u) =
4u2

4u2+(1¡u)2 is convex and concave in different regions of the solution space. The

numerical solution is computed up to the time t= 0.4 with the initial condition

u(x; 0)=

�
1; x2 [¡1/2; 0]
0; elsewhere

At t= 0.4, the characteristics that originate from the two discontinuities do not inter-
sect, and thus we only have to deal with the two uncoupled Riemann problems.
Solutions to Riemann problems for piecewise strictly convex-concave fluxes can be
computed explicitly. In case of the Buckley-Leverett model, we can split the state-
space [0;1] into [0;ubuck] and [ubuck;1] so that f is strictly convex in (0;ubuck) and strictly
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concave in (ubuck; 1). Thus, the solution to a Riemann problem with states 0; 1 would
compose of a rarefaction and shock, and the exact solution corresponding to the above
defined initial condition is composed of two rarefaction-shock combinations. Since
the solution measures saturation of displacing fluid, it should lie in the interval [0; 1]
and we try to enforce this by applying a positivity preserving scaling limiter [205]. For
the LW schemes, we cannot strictly prove the positivity of the resulting scheme4.1 but
numerical results show that this holds in practice, with slightly reduced CFL number
compared to the Fourier CFL number. For N =4, the optimal CFL conditions preserve
the bounds, while a slightly reduced CFL of 0.079 was needed for N =3. Figure 4.20
shows the results at the final time obtained using degreeN=3;4, respectively. Since the
flux is monotone in solution space, an upwind numerical flux is used at cell interfaces,
i.e., Fe+ 1

2

=F
e+

1

2

¡ . The numerical solutions are able to resolve all the waves well including

correct shock location, and they compare well with the results from the RK scheme.
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Figure 4.20. Solution of Buckley-Leverett model with TVD limiter using polynomial degrees N=3;
4 with 200 dofs in each case. A positivity preserving scaling limiter [205] has been used to keep the
solution in [0; 1].

4.8. Numerical results in 1-D: Euler equations

As an example of a system of non-linear hyperbolic equations, we consider the one-
dimensional Euler equations of gas dynamics given by

@
@t

0BB@ �
� u
E

1CCA+ @
@x

0BB@ � u

p+ � u2

(E+ p)u

1CCA=0 (4.16)

where �; u; p and E denote the density, velocity, pressure and total energy per unit
volume of the gas, respectively. For a polytropic gas, an equation of state E=E(�; u;

4.1. This issue is later overcome by switching to a subcell based blending limiter in Chapter 5, but also
without the blending limiter in Chapter 6.
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p) which leads to a closed system is given by

E=E(�; u; p)=
p


 ¡ 1 +
1
2
� u2 (4.17)

where 
 >1 is the adiabatic constant, which will be taken as 1.4, the value for air. The
time step size for polynomial degree N is computed as

�t=CCFLmin
e

�
�xe
jv�ej+ c�e

�
CFL(N) (4.18)

where e is the element index, v�e; c�e are velocity and sound speed of element mean in
element e, CFL(N) is the optimal CFL number obtained by Fourier stability analysis
(Table 4.1) and CCFL� 1 is a safety factor. The CFL safety factor of 0.95 is used in
all results, unless specified otherwise.

The numerical fluxes for Euler equations are explained in the Appendix D. In the
following results, wherever it is not mentioned, we use the Rusanov flux.

In the scalar results, we see that the LW scheme with Radau correction function is
superior to that with g2 correction function in terms of error reduction. In light of this,
for the 1-D Euler case we compare the performance of LW scheme with RK scheme
using the Radau correction function. It is also observed that the EA scheme is more
accurate than AE in the scalar case. So, for the 1-D Euler case we present only those
results obtained using EA schemes.

Note that wherever it is not specified we use the CFL numbers of Table 4.1 and
whenever we compare the numerical solutions of LW scheme with that of RK scheme,
both are run with the CFL numbers of LW scheme. Specifically, In the time integration
of the RK schemes, for degree N =1 and 2, we use (N +1)-stage SSPRK method of
order N +1. For N =3, we use a five stage, SSPRK method of order four [167] as there
is no four stage SSPRK method. In smooth test cases and for N =4, we use a six stage
Runge-Kutta method of order five [183]. In those test cases where the solution is not
sufficiently smooth, the SSP property of the RK time integration is useful in obtaining
non-oscillatory solutions. As we do not have SSPRK method of order five with positive
coefficients [153], we use the SSPRK method [167] of order four when N =4.

4.8.1. Smooth solution

To verify the accuracy of the proposed scheme, we solve the Euler equations (4.16, 4.17)
with a smooth initial condition

�(x; 0)=1+ 0.5 sin(2�x); u(x; 0)=1; p(x; 0)=1

in the domain [0;1] with periodic boundary conditions for all the variables. The corre-
sponding exact solution is a density wave, i.e., it consists of a translation of the initial
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density at constant speed of one, and is given by

�(x; t)= 1+ 0.5 sin(2� (x¡ t)); u(x; t)= 1; p(x; t)= 1

We compute the solution up to the time t=1 and estimate the error norms. The linear
nature of this test case makes EA and AE schemes equivalent, and we show only the
EA results. We plot the error in the density obtained using the LW and RK schemes
and the corresponding results are given in Figure (4.21). In each case we observe the
expected order of accuracy and the error reduction is close to that of RK scheme.
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Figure 4.21. Density error convergence for 1-D Euler's equation at time t=1. The different colors
correspond to degrees N =1; 2; 3; 4 from top to bottom. (a) GL points, (b) GLL points.

Remark 4.5. Based on the scalar test cases and the above smooth test case for
Euler equations, in all the remaining 1-D Euler test cases, we present only the results
obtained using D2 scheme since it is advantageous in terms of having higher CFL
number and performs as well as or better than the D1 scheme.

4.8.2. Sod's shock tube problem

The Sod's shock tube problem [164] is a Riemann problem which models a shock tube
where gas at two different conditions initially is allowed to interact, with the formation
of shock, contact and rarefaction waves. The Euler equations (4.16) are solved with
the initial condition

(�; u; p)=

�
(1; 0; 1); if x< 0.5
(0.125; 0; 0.1); if x> 0.5

(4.19)

4.8 Numerical results in 1-D: Euler equations 61



for which the exact solution is composed of a left rarefaction, a contact discontinuity
and a right shock wave. The approximate solution is computed in the domain [0;
1] with the outflow boundary conditions on both the ends x= 0 and x= 1. We run
the numerical scheme up to time t= 0.2 with 100 cells using the TVB limiter with
parameter M = 10. The density profile obtained using the LW and RK schemes for
N =3 and N =4 are shown in Figure 4.22 together with the exact solution. From the
plots it is visible that the results obtained using the LW scheme agree very well with
that of RK scheme.
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Figure 4.22. Numerical solutions of 1-D Euler equations (Sod's test case) obtained by LW and RK
schemes for polynomial degree (a) N = 3 and (b) N = 4 using Radau correction function and GL
solution points. The solutions are shown at time t= 0.2 on a mesh of 100 cells with Rusanov flux
and D2 dissipation. The TVB limiter is used with the parameter M = 10.

4.8.3. Lax problem

We consider the Lax problem given in [111, 92] which solves a Riemann problem for
the system of equations (4.16) with initial condition

(�; u; p)=

�
(0.445; 0.698; 3.528); if x< 0
(0.5; 0; 0.571); if x> 0

(4.20)

where, unlike the Sod's shock tube problem, the initial velocity is not zero. The exact
solution of this Riemann problem is known and it consists of a rarefaction, a right
moving contact discontinuity and shock. For a detailed description of this problem,
see [92]. This is a demanding test case in the sense that, high order schemes are prone to
produce oscillations near the contact discontinuity. The numerical solution is computed
up to time t= 1.3 in the domain [¡5; 5] using 100 cells and using TVB limiter with
parameter M = 1. The approximate solutions are computed for polynomial degrees
N =3 and N =4, and the corresponding density profiles are shown in Figure 4.23 along
with the exact solution. We observe that the LW scheme captures the wave structures
accurately without oscillations and the numerical solutions are very close to that of
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RK scheme.
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Figure 4.23. Numerical solutions of 1-D Euler equations (Lax's test case) obtained by LW and
RK schemes for polynomial degree (a) N=3 and (b) N=4 with Radau correction function and GL
solution points. The solutions are computed on a mesh of 200 cells with dissipation model D2 and
Rusanov numerical flux and are shown at time t=1.3. The TVB limiter is used with parameterM=1.

4.8.4. Shu-Osher problem

This problem was developed in [163] to test the numerical scheme's capability to
accurately capture a shock wave and its interaction with a smooth density field, which
then propagates downstream of the shock. Here, we compute the numerical solution
of (4.16) with initial condition

(�; u; p)=

�
(3.857143; 2.629369; 10.333333); if x<¡4
(1+ 0.2 sin(5x); 0; 1); if x�¡4 (4.21)

prescribed in the domain [¡5; 5] at time t= 1.8. The smooth density profile passes
through the shock and appears on the other side, and its accurate computation is chal-
lenging due to numerical dissipation introduced by limiters at the shock. We discretize
the spatial domain with 400 cells and to control the spurious oscillations we use the
TVB limiter with parameterM=300 [137]. The density component of the approximate
solutions computed using LW and RK schemes for N =3 and N =4 are plotted against
a reference solution obtained using a very fine mesh, and are given in Figure 4.24. We
observe that the post shock wave patterns are accurately captured by the proposed
LW scheme. Furthermore, the enlarged plots of the oscillatory portion indicate that
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the numerical solutions corresponding to LW scheme are comparable with that of RK
schemes.
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Figure 4.24. Numerical solutions of 1-D Euler equations (Shu-Osher problem) obtained by LW
and RK schemes for (a, c) N =3 and (b, d) N =4 with Radau correction function and GL solution
points. The enlarged plot of the oscillatory portion is given in the bottom row. The solutions are
shown at time t=1.8 on a mesh of 400 cells with dissipation model D2 and Rusanov numerical flux.
The TVB limiter is used with parameter M = 300.

4.8.5. Blast wave

In this test case the Euler equations (4.16) are solved with the initial condition

(�; u; p)=

8>><>>:
(1; 0; 1000); if x< 0.1
(1; 0; 0.01); if 0.1<x< 0.9
(1; 0; 100); if x> 0.9

in the domain [0; 1]. It is originally introduced in [197] to check the capability of the
numerical scheme to accurately capture the shock-shock interaction scenario. The
boundaries are set as solid walls by imposing the reflecting boundary conditions at
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x=0 and x=1. The solution consists of reflection of shocks and expansion waves off
the boundary wall and several wave interactions inside the domain. With a grid of 400
cells, we run the simulation till the time t= 0.038 where a high density peak profile is
produced. The TVB limiter as in [137] with parameter M = 300 is used along with a
positivity preserving scaling limiter [205]. The scaling limiter is used without the flux
limiting introduced in Chapters 5, 6 and is thus not provably positive. We compare the
performance of the LW scheme with the RK scheme and analyze how well they predict
the density profile and its peak amplitude. For N =3 and N =4 cases, the results are
given in Figure 4.25 where the approximated density profiles are compared with a
reference solution computed using a very fine mesh. From the plots it is evident that
the computed density profile obtained using LW scheme are close to that of RK scheme.
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Figure 4.25. Numerical solutions of 1-D Euler equations (Blast wave) obtained by LWFR and
RKFR schemes for (a) N=3 and (b) N=4 using Radau correction function and GL solution points.
The solutions are plotted at time t=0.038 on a mesh of 400 cells with dissipation model D2 and
Rusanov numerical flux. The corresponding CFL numbers of LWFR scheme are chosen from the
Table 4.1 and kept same for the RKFR schemes. TVB limiter is used with the parameter M=300
and the EA scheme is used for numerical flux.

4.8.6. Numerical fluxes: LF, Roe, HLL and HLLC

The previous Euler results used Rusanov flux. Here, we show performance of other
numerical fluxes like HLL, HLLC, Roe and global Lax-Friedrichs which were described
for LWFR in Appendix D. Fluxes like HLL, HLLC and Roe may be desirable in some
problems due to their upwind character, unlike Lax-Friedrich/Rusanov type fluxes.
Moreover, HLLC and Roe fluxes also model the linear contact and shear waves which
can lead to better approximations of these waves. We have tested the numerical fluxes
in all the test cases, however to save space we present only the blast test case for N =3.
The results are given in Figure 4.26 which compare these fluxes with Rusanov flux.
The high density peak region is better approximated by the LW schemes using HLL,
HLLC and Roe fluxes, as compared to the Rusanov flux. The global LF flux is found to
be less accurate in this respect when compared to the Rusanov flux, which is expected
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due to the larger amount of numerical dissipation in the global Lax-Friedrich flux.
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Figure 4.26. Numerical solutions of 1-D Euler equations (Blast wave) obtained by LW schemes
with different numerical fluxes (a) LF, (b) HLL, (c) HLLC and (d) ROE compared with Rusanov
flux, for N =3 using Radau correction function and GL solution points. All other parameters remain
the same as in Figure 4.25.

Since HLLC and Roe schemes contain more information about the wave structure,
they are better at resolving contact discontinuities which are linearly degenerate waves
that can be severely affected by numerical dissipation. We illustrate this through two
Riemann problems containing stationary contact waves. The first one consists of an
initial density jump that leads to a stationary contact wave, with initial condition given
by,

(�; u; p)=

�
(1; 0; 1); if x< 0.5
(2; 0; 1); if x> 0.5

In Figure 4.27a, we show the comparison of numerical fluxes for this stationary solu-
tion test case, zoomed near the discontinuity, at t= 1.0 using LW schemes with D2
dissipation model for degree N =4 on a grid of 100 cells together with TVB (M =1)
limiter. As expected, we see that Roe and HLLC fluxes are able to resolve the contact
discontinuity exactly, while the other fluxes smear the jump over two cells.
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The second Riemann problem is a tough test case with respect to maintaining
positivity of pressure and is taken from [181]. The initial condition is given by

(�; u; p)=

�
(1;¡19.59745; 1000); if x< 0.8
(1;¡19.59745; 0.01); if x> 0.8

The solution develops a stationary contact at the location of the initial discontinuity
x= 0.8 and a right moving shock wave. In Figure 4.27b, we show the comparison of
numerical fluxes, zoomed near the contact discontinuity, at t= 0.012 obtained using
LW scheme with D2 dissipation model for polynomial degree N =4 on a grid of 100
cells and TVB (M =1) limiter. As in the previous case, the HLLC flux captures the
contact discontinuity more accurately than the other fluxes.
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Figure 4.27. Numerical solutions of 1-D Euler's equations for (a) stationary contact test, (b) Toro's
Test 5 obtained by LW schemes with different numerical fluxes for polynomial degree N =4 using
Radau correction function and GL solution points, TVB (M =1) limiter on a grid of 100 cells.

4.8.7. Comparison of correction functions

We compare the robustness and accuracy of the two correction functions, Radau and
g2, in the LW scheme when applied to the Euler equations (4.16) with GL solution
points. The numerical experiments are conducted for the Shu-Osher test case and
the corresponding results are obtained with the HLLC numerical flux for polynomial
degrees N = 1; 2; 3; 4, see Figure 4.28. For this test case, it is observed that the LW
scheme with g2 correction function fails to work for N = 1 with the optimal CFL of
Table 4.1 due to loss of positivity of pressure. So, we use a smaller CFL number of
0.44 to compute the N = 1 case in Figure 4.28. For N � 2, the solutions computed
using the g2 correction function are found to be close to that of Radau correction
function. However, it fails to perform consistently, as we see in the N =1 case. With
this observation and also the behaviour for other problems, we see that it is desirable
to use the Radau correction function in the LW scheme.
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Figure 4.28. Numerical solutions of 1-D Euler equations (Shu-Osher problem) for (a) N =1, (b)
N =2, (c) N =3, (d) N =4. Comparison of LW scheme with GL solution points for two correction
functions, Radau and g2, with their own CFL numbers chosen from Table 4.1, except for g2 correction
function with N =1, where we choose CFL=0.44. The enlarged oscillatory portion of the solutions
is shown. The solutions are computed at time t= 1.8 on a mesh of 400 cells with dissipation model
D2 and HLLC numerical flux. The TVB limiter is used with parameter M = 300.

u f g

Figure 4.29. Location of solution and flux points on a 2-D FR element for the degree N =2 case.
Numerical flux is required at the blue points on the faces.

4.9. Two dimensional scheme
The extension of the 1-D scheme to two dimensions is performed by applying the 1-D
ideas along each coordinate direction. Consider a 2-D conservation law of the form

ut+ f(u)x+ g(u)y=0 (4.22)
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where (f ; g) are Cartesian components of the flux vector. Using Taylor expansion in
time, we can write the solution at t= tn+1 as

un+1=un¡�t
�
@F
@x

(un)+
@G
@y

(un)

�
+O(�tN+2)

where F ;G are time average fluxes given by

F (u)=
X
m=0

N
�tm

(m+1)!
@t
mf(u); G(u)=

X
m=0

N
�tm

(m+1)!
@t
mg(u)

We will consider a Cartesian mesh and map each element 
e to the reference ele-
ment K̂ = [0; 1]� [0; 1]. Inside the reference element, the solution points are chosen
to be tensor product of 1-D solution points, which may be either GL or GLL points.
Figure 4.29 shows an example of 2-D solution points based on tensor product of 1-
D GL points. The solution inside an element 
e is approximated by a tensor product
polynomial of degree N ,

(x; y)2
e: uh=
X
p=0

N X
q=0

N

ue;pq `p(�) `q(�)

where (�; �) are coordinates in the reference element, and `p(�); `q(�) are the 1-D
Lagrange polynomials based on the solution points. The discontinuous fluxes are
approximated by interpolating at the solution points,

Fh
� (�; �)=

X
p=0

N X
q=0

N

Fe;pq `p(�) `q(�); Gh
� (�; �)=

X
p=0

N X
q=0

N

Ge;pq `p(�) `q(�)

where Fe;pq;Ge;pq are time average fluxes obtained from the Lax-Wendroff procedure
applied at each solution point. The continuous flux along the x and y axes are con-
structed using the one dimensional algorithm along the �= �q= constant and �= �p=
constant lines, respectively, see Figure 4.29,

Fh (�; �q)= [Fe¡ 1

2
;q¡Fh

� (0; �q)] gL(�)+Fh
�(�; �q)+ [Fe+ 1

2
;q¡Fh

� (1; �q)] gR(�); 0� q�N

Gh(�p; �)=[Ge¡ 1

2
;p¡Gh

� (�p;0)] gL(�)+Gh
� (�p; �)+[Ge+

1

2
;p¡Gh

� (�p;1)] gR(�); 0� p�N

Note that the above equations are obtained by applying the FR idea along the hor-
izontal and vertical lines in Figure 4.29. The quantities Fe¡ 1

2

;Fe+ 1

2

are x-directional

numerical fluxes on the left and right faces, while Ge¡ 1

2
;Ge+

1

2
are the y-directional

numerical fluxes across the bottom and top faces, respectively. The update equation
is given by a collocation procedure at each solution point,

ue;pq
n+1=ue;pq

n ¡�t
�

1
�xe

@Fh
@�

(�p; �q)+
1
�ye

@Gh

@�
(�p; �q)

�
; 0� p; q�N (4.23)
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where the flux derivatives can be computed from

@�Fh(:; �q)=
h
Fe¡ 1

2
;q¡Fh

� (0; �q)
i
bL+@�Fh�(:; �q)+

h
Fe+ 1

2
;q¡Fh

� (1; �q)
i
bR; 0� q�N

@�Gh(�p;: )=
h
Ge¡ 1

2
;p¡Gh

� (�p;0)
i
bL+@�Gh

�(�p;:)+
h
Ge+

1

2
;p¡Gh

� (�p;1)
i
bR; 0� p�N

We can cast the update equation in matrix form. For this, define the flux matrices

Fe(p; q)=Fe;pq; Ge(p; q)=Ge;pq; 0� p; q �N

Then we can compute the derivatives of the discontinuous flux at all the solution points
by a matrix-matrix product

@�Fh
�(:;:) =DFe; @�Gh

�(:;:) =GeD>

where D is the 1-D differentiation matrix. Note that D acts on each component for
systems of equations, see Appendix E for its efficient implementation. The update
equation can be written in matrix form,

ue
n+1 = uen¡

�
�t
�xe

D1Fe+
�t
�ye

GeD1
>
�
¡ �t
�xe

h
bLF

e¡ 1

2

> +bRF
e+

1

2

>
i

¡ �t
�ye

h
Ge¡ 1

2

bL>+Ge+
1

2

bR>
i (4.24)

where the quantities D1; bL; bR have been defined before in the description of the 1-D
scheme in Section 4.2.2.

The time average fluxes are computed by the approximate Lax-Wendroff procedure.
To describe this, let us define the flux matrices

fe(p; q)= f(ue;pq); ge(p; q)= g(ue;pq); 0� p; q �N

The time derivatives of the solution at all solution points are obtained from the PDE
by the following matrix equation,

ue
(m)=¡ �t

�xe
Dfe

(m¡1)¡ �t
�ye

ge
(m¡1)D>; m=1; 2; : : : ; N (4.25)

and the time average solution and fluxes are given by

Ue=
X
m=0

N
ue
(m)

(m+1)!
; Fe=

X
m=0

N
fe
(m)

(m+1)!
; Ge=

X
m=0

N
ge
(m)

(m+1)!
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The time derivatives of the fluxes fe
(m), ge

(m) are approximated using finite differences
in time as in the 1-D case given in Section 4.2.4; those formulae are applied to both
components of the flux. The stable time step is determined by considering the linear
advection equation in 2-D and applying Fourier stability analysis to the LW scheme,
as described in Section 4.9.1.

4.9.1. Fourier analysis in 2-D

Consider the linear advection equation

ut+ a1ux+ a2uy=0 (4.26)

where (a1; a2) is a constant velocity. We first write the LW scheme for (4.26) in matrix
form which helps to derive the Fourier amplification term. Let us define the matrix of
solution and flux values by

ue(p; q)=ue;pq; fe(p; q)= a1ue;pq; ge(p; q)= a2ue;pq

In the Lax-Wendroff procedure, the time derivative of the solution at all the solution
points is given by (4.25)

ue
(m)=¡�1 Due

(m¡1)¡�2 ue
(m¡1)D>; m=1; 2; : : : ; N

where �1;�2 are the CFL numbers along x; y directions, respectively, which are given by

�1=
a1�t
�xe

; �2=
a2�t
�ye

Then the time average solution and fluxes are given by

Ue=
X
m=0

N
ue
(m)

(m+1)!
; Fe=a1Ue; Ge=a2Ue

To perform the Fourier analysis, we must write the scheme (4.23) in matrix-vector form.
To do this, let us renumber the two dimensional indices (p; q) which denote solution
points, into the one dimensional numbering by the following transformation

k= p+(N +1) q; 0� p; q�N

Then k takes the values 0 to M =(N +1)2¡ 1. If �e2R(N+1)�(N+1) is some quantity
defined at the solution points, we let J�e K 2RM+1 denote the same renumbered as
above. After renumbering, the matrix-matrix products become

JA�e K=R1(A)J�e K; J�eA K=R2(A)J�e K
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where

R1(A)= I
A; R2(A)=A>
I

with 
 denoting the kronecker product. Then the renumbering of the solution time
derivatives and time average solution and fluxes are given by

Jue(m) K=(¡�1R1(D)¡�2R2(D>))Jue(m¡1) K=:H1Jue(m¡1) K; m=1; 2; : : : ; N

JUe K=
 X

m=0

N
H1
m

(m+1)!

!
Jue K=: TJue K; JFe K= a1JUe K; JGe K= a2JUe K

Finally, the renumbered terms in the update equation (4.24) are given by

JD1Fe K=R1(D1)JFe K=a1R1(D1)TJue K; JGeD1
> K=R2(D1

>)JGe K=a2R2(D1
>)TJue K

so that the cell terms can be written as

s
�t
�xe

D1Fe+
�t
�ye

GeD1
>
{
=(�1R1(D1)T+�2R2(D1

>)T)Jue K

For the terms involving the numerical flux, let us consider the case a1� 0, a2� 0. Let
ul; ur; ub denote the solution in the elements to the left, right and bottom of the e'th
element. Then, for the upwind flux which is obtained for dissipation model D2, we can
renumber the terms involving the numerical flux as follows

�t
�xe

r
bLF

e¡ 1

2

> +bRF
e+

1

2

>
z
=

�t
�xe

Ja1bLVR
>Ul+a1bRVR

>Ue K
= �1R1(bLVR

>)TJul K+�1R1(bRVR
>)TJue K

�t
�ye

r
Ge¡ 1

2

bL>+Ge+
1

2

bR>
z
=

�t
�ye

Ja2UbVRbL>+a2UeVRbR> K

= �2R2(VRbL>)TJub K+�2R2(VRbR>)TJue K

The update equation can be written as

Juen+1 K=AlJuln K+AeJuen K+AbJubn K

where the coefficient matrices are given by

Al=¡�1R1(bLVR
>)T; Ab=¡�2R2(VRbL>)T

Ae=I ¡�1R1(D1)T¡�2R2(D1
>)T¡�1R1(bRVR

>)T¡�2R2(VRbR>)T
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Assuming a solution of the form uen=ûk
n exp (i (k1xe+ k2 ye)), we get the amplification

equation

Jûkn+1 K=(Alexp (¡i�1)+Ae+Abexp (¡i�2))Jûkn K=:H(�1; �2;�1; �2)Jûk
n K

where �1=k1�x and �2=k2�y. For stability, it is required that the spectral radius of
the matrix H(�1; �2;�1; �2) is less than or equal to one for all wave numbers �1; �22 [0;
2 �]. Numerically, we compute the region consisting of the pairs (�1; �2) that ensure
the stability. These regions for different degrees with dissipation model D2 are given in
Figures (4.30) and (4.31) for the Radau and g2 correction functions, respectively. We
set CFL=2c, where c :=maxf�: (�;�)is a stable pairg which is the CFL limit when the
advection velocity is in the direction (1; 1). These CFL numbers for different degrees
are given in Table 4.2. We see from the figures that the stable domain is bounded by
a straight line except in case of degree N =1 so that this region is given by

j�1j+ j�2j �CFL (4.27)

If the advection velocity is along the x or y axis, the CFL corresponds to that of the
1-D case, but if the velocity is at an angle to the grid, then the allowed time step is
reduced. This is because of the one dimensional numerical fluxes employed at the cell
faces which couple each cell only to its left/right and bottom/top cells, without any
coupling with the diagonal neighbours.

(a) (b) (c) (d)

Figure 4.30. Stability regions of LWFR scheme with the Radau correction function and D2 dissi-
pation model in two dimensions. (a) N =1, (b) N =2, (c) N =3, (d) N =4.

(a) (b) (c) (d)

Figure 4.31. Stability regions of LWFR scheme with g2 correction function and D2 dissipation
model in two dimensions. (a) N =1, (b) N =2, (c) N =3, (d) N =4.
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N 1 2 3 4
Radau 0.259 0.166 0.101 0.067
g2 0.511 0.348 0.178 0.108

Table 4.2. Two dimensional CFL numbers for LWFR scheme (satisfying (4.27)) with dissipation
model D2 and two correction functions.

4.10. Numerical results in 2D: scalar problems

We present results to test the error convergence properties of the LW schemes for some
2-D problems and compare them to RK scheme. For each problem in this section, the
corresponding CFL numbers are chosen based on Fourier stability analysis which are
given in Table 4.2. We compare Lax-Wendroff scheme with D2 dissipation model and
Runge-Kutta schemes in this section, and the CFL numbers of the former are used for
both schemes. For the RKFR scheme, we use SSP Runge-Kutta time integration [82]
for N = 1 and 2, the classical four stage Runge-Kutta method of order four for N =
3, and six-stage, fifth order Runge-Kutta (RK65) time integration for N = 4 [183]
implemented in DifferentialEquations.jl [139]. All the results in this section are
produced using code written in Julia [29]; the design and optimization of the code was
inspired by Trixi.jl [141].

4.10.1. Advection of a smooth signal

We consider the advection equation in two dimensions

ut+r � [a(x; y)u] = 0; (4.28)

with two types of divergence-free advection velocity, namely a constant velocity a=(1;
1) and a variable velocity a=(¡y;x). For the second velocity, the flux components are
(f ; g)= (¡yu; xu) so that Fh� is of degree N in x and Gh

� is of degree N in y variable.
Since Fh� is interpolated along x direction and Gh

� is interpolated along y direction,
there is no interpolation error due to non-linearity of the flux and the EA and AE
schemes are equivalent. Due to this reason, we only show the results with EA scheme.
In order to verify the accuracy of the LWFR scheme we consider the equation (4.28)
with a smooth initial condition and perform the simulation for both the advection
velocities. For the velocity a= (1; 1), the characteristic curves are straight lines and
we use periodic boundary conditions on the domain [0; 1]� [0; 1] with initial condition
u0(x; y) = sin (2 � x) sin (2 � y). The error convergence plots are shown in Figure 4.32
using Radau correction function. The optimal convergence rate is attained by both LW
and RK schemes and there is no significant difference between GL and GLL points.
The errors of RK scheme are slightly smaller than those of the LW scheme, similar to
the 1-D case.

For the variable velocity a= (¡y; x), the characteristic curves are circles whose
center is at the origin and we take the domain 
= [0; 1]� [0; 1]. The exact solution
is given by u(x; y; t) = u0(x cos(t) + y sin(t);¡x sin(t) + y cos(t)) with the initial con-
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dition u0(x; y)= 1+ exp(¡50 ((x¡ 1/2)2+ y2)). At the bottom and right boundaries,
we use inflow conditions while on top and left side of the boundary, we use outflow
conditions. The initial condition advects along the circular characteristic curves in
the counter clock-wise direction. A contour plot of the numerical solution is visualized
in Figure 4.33, and the error convergence analysis is made in Figure 4.34. The error
convergence agrees with the optimal convergence rates and the error values of the LW
scheme are comparable to those from the RK scheme at all orders shown in the figures.

152 302 602 1202

Number of cells

10 11

10 9

10 7

10 5

10 3

L2  
er

ro
r

GL, Radau

LW-D2
RK
N + 1

152 302 602 1202

Number of cells

10 11

10 9

10 7

10 5

10 3

L2  
er

ro
r

GLL, Radau

LW-D2
RK
N + 1

(a) (b)

Figure 4.32. Error convergence test for 2-D linear advection equation with velocity a= (1; 1) at
t=1, initial data u0 (x; y)= sin (2�x) sin (2�y); (a) GL points, (b) GLL points. The different colors
correspond to degrees N =1; 2; 3; 4 from top to bottom.

4.10.2. Rotation of a composite signal

In this example, we consider a classical test case [117] where the equation (4.28) is
solved with a divergence free velocity field a= (

1

2
¡ y; x¡ 1

2
) and an initial condition

which consists of a slotted disc, a cone and a smooth hump, given as follows

u0 (x; y) = u1 (x; y)+u2 (x; y)+u3 (x; y); (x; y)2 [0; 1]� [0; 1]
u1 (x; y) =

1
4
(1+ cos (� q(x; y)))

q(x; y) = min ( (x¡x�)2+(y¡ y�)2
p

; r0)/r0; (x�; y�)= (0.25; 0.5); r0= 0.15

u2 (x; y) =

8>><>>: 1¡ 1
r0

(x¡x�)2+(y¡ y�)2
p

if (x¡x�)2+(y¡ y�)2� r02

0 otherwise
;

(x�; y�)= (0.5; 0.25); r0= 0.15

u3 (x; y) =

�
1 if (x; y)2C
0 otherwise
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where C is a slotted disc with center at (0.5; 0.75) and radius of 0.15. The initial
condition is shown in Figure 4.35a. The numerical solutions of LWFR and RKFR
after one rotation, without limiter, degree N = 3 and 100� 100 cells, are shown in
Figures 4.35b,d respectively. The same results with a TVB limiter (M = 100) are
shown in Figures 4.35c,e. Without the limiter, the solution is captured well but there
are some oscillations that take the solution outside the initial range of values. With
the TVB limiter, the oscillations are reduced though it is not completely eliminated
and results in increased numerical dissipation that smears the discontinuous profiles.
However, in all cases, LWFR scheme performs comparably with RKFR scheme with
the same limiter settings.

(a) (b) (c)

Figure 4.33. Linear advection with velocity a = (¡y; x) on [0; 1] � [0; 1] with inflow/outflow
boundary condition. The solutions are shown on a mesh of 50� 50 cells with polynomial degree
N =3; (a) initial solution, (b) LWFR, t= �

2
(c) RKFR, t= �

2
.
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Figure 4.34. Error convergence test for 2-D linear advection equation with velocity a=(¡y; x) at
t= �

2
, initial data u0 (x; y)= 1+ exp (¡50 ((x¡ 1/2)2+ y2)) using (a) GL points, (b) GLL points.
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(a) Exact

(b) LWFR (d) RKFR

(c) LWFR (e) RKFR

Figure 4.35. Numerical solutions of composite signal with velocity a=
¡ 1
2
¡ y; x¡ 1

2

�
obtained for

degree N = 3 using Radau correction function and GL solution points. The solutions are plotted
after 1 period of rotation on a mesh of 100�100 cells; No limiter is used in (b), (c) and TVB limiter
(M = 100) is used in (d), (e).

4.10.3. Inviscid Burgers' equation
We test the accuracy and robustness of the LWFR scheme for the two dimensional
nonlinear scalar problem by considering a Burger-type equation [137]

ut+

�
u2

2

�
x

+

�
u2

2

�
y

=0 (4.29)

with an initial condition u(x; y; 0)=
1
4
+
1
2
sin(2 � (x+ y)) in the domain 
= [0; 1]�

[0; 1]. The boundary conditions are set to be periodic in both directions. To test
the error convergence, the solutions are computed up to time t = 0.1 as shown in
Figure 4.36a, when the solutions are still smooth and the exact solution is available.
The error convergence results up to degree four are given in Figure 4.37 using D2
dissipation model and Radau correction function. Similar to that in the 1-D case,
the AE scheme shows optimal convergence rate for even polynomial degrees but sub-
optimal convergence rates for odd degrees. The EA scheme on the other hand shows
optimal convergence rates at all degrees and the error values are also comparable
to those of RK scheme. In order to show the robustness of the LWFR scheme, we
compute the numerical solution at time t=0.2 where the solution is discontinuous. The
corresponding solution across the diagonal of the domain for mesh size 50� 50 with
N =3 is shown in Figure 4.36b which shows that the shock is captured accurately and
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without spurious oscillations. In each case, when the interface fluxes are computed
with EA scheme, the LWFR schemes perform at par with the RKFR schemes.
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(a) t= 0.1 (b) t= 0.2

Figure 4.36. Line plot across the diagonal of [0; 1]�[0; 1] of the solution of 2-D Burgers' equation
with 50 � 50 cells and degree N=3. The reference solution for t=0.2 is computed using RKFR
scheme with degree N=1 on a mesh of 1000 � 1000 cells.
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Figure 4.37. Error convergence test for 2-D Burgers' equation with initial condition u (x; y; 0)=
1
4
+ 1
2
sin(2 � (x+ y)) in the domain [0; 1]� [0; 1] comparing the two boundary fluxes of LWFR (a)

AE, (b) EA. The errors are computed at t= 0.1.

4.11. Numerical results in 2-D: Euler equations
We consider the two-dimensional Euler equations of gas dynamics (2.13). We present
results to test the accuracy and computational performance of the LW schemes for some
2-D problems and compare them to RK scheme. The time step size for polynomial
degree N is computed as

�t=CCFLmin
e

�
ju�ej+ c�e
�xe

+
jv�ej+ c�e
�ye

�¡1
CFL(N) (4.30)
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where e is the element index, (u�e; v�e); c�e are velocity and sound speed of element mean
in element e, CFL(N) is the optimal CFL number of the scheme and CCFL� 1 is a
safety factor. For each problem in this section, the corresponding CFL numbers of
Lax-Wendroff schemes are chosen based on the Fourier stability analysis which are
given in Table 4.2. For a fair performance comparison, the Runge-Kutta schemes use
their optimal CFL numbers [76]. The CCFL is taken to be 0.98 in all results. The time
averaged flux is always computed using the EA scheme. For RKFR, we use SSP Runge-
Kutta time integration [82] for degrees N =1 and 2, the five stage SSP Runge-Kutta
method of order four for N =3 [167], and six-stage, fifth order Runge-Kutta (RK65)
time integration forN=4 [183] implemented in DifferentialEquations.jl [139]. We
make use of the HLLC flux with wave speeds from [23]. All the results in this section
are produced using code written in Julia [29].

4.11.1. Isentropic vortex

We perform error convergence and Wall Clock Time (WCT) analysis using the isen-
tropic vortex test case [200, 166]. This problem consists of a vortex that advects at
a constant velocity while the entropy is constant in both space and time. The initial
condition is given by

�=

�
1¡ �2 (
 ¡ 1)

8 
 �2
exp (1¡ r2)

� 1


¡1
; u=M cos�¡ � (y¡ yc)

2�
exp
�
1¡ r2
2

�

v=M sin�+
� (x¡xc)

2�
exp
�
1¡ r2
2

�
; r2=(x¡xc)2+(y¡ yc)2

and the pressure is given by p= �
. We choose the parameters � = 5, M = 0.5, �=
45o, (xc; yc) = (0; 0) and the domain is taken to be [¡10; 10]� [¡10; 10] with periodic
boundary conditions. For this configuration, the vortex returns to its initial position
after a time interval of T = 20 2

p
/M units. We run the computations up to a time

t=T when the vortex has crossed the domain once in the diagonal direction.
The L2 error and Wall Clock Time (WCT) against grid resolution is shown in

Figure 4.38. We observe optimal convergence rates for all new LW schemes proposed in
this paper. The WCT scales as the total number of cells to the power of 1.5, which is
the expected rate and the LW-D2 scheme shows smallest time as seen in Figure 4.38b.
We denote by WCT(LW-D1) the Wall Clock Time corresponding to LW-D1 scheme,
and similarly for other schemes.

The WCT versus L2 error comparison has been made in Figure 4.39 and the ratios
WCT(LW-D1)/WCT(LW-D2) and WCT(RK)/WCT(LW-D2) are plotted against grid
resolution in Figures 4.40a and 4.40b, respectively. We see that the newly proposed
LW-D2 scheme is more efficient in comparison to the LW-D1 scheme since it can use
a larger CFL number. As we expect from Table 4.1 comparing the CFL ratios, the
explicit time ratios of LW-D1 and LW-D2 are consistently in the range of 1.4 and 1.5
for N > 1, as shown in Figure 4.40a.

Figure 4.39 shows that LW-D2 has smaller Wall Clock Time than RK for all degrees
and Figure 4.40b shows that the WCT ratio WCT(RK)/WCT(LW-D2) is close to
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1.1; 1.4; 1.7 for N = 1; 2; 3 respectively. Thus, the ratio improves as we increase the
degree up to 3. However, at N =4, the ratio deteriorates to approximately 1.2. The
low CFL number of LW at N =4 relative to the RK scheme plays a role in this loss of
performance. Figure 4.39 shows that when the error levels are small, the higher order
schemes are more efficient in terms of WCT than lower order methods.
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Figure 4.38. L2 error and Wall Clock Time (WCT) analysis of 2-D Euler equations (isentropic
vortex) against grid resolution comparing LW-D1, LW-D2 and RK is shown in (a) and (b) respec-
tively. The error is computed after one period. The time step size of each scheme is computed using
its optimal CFL from Fourier stability analysis.
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Figure 4.39. Wall Clock Time (WCT) versus L2 error for 2-D Euler equations (isentropic vortex)
comparing LW-D1, LW-D2 and RK for degrees N = 1; 2; 3; 4. The different colors correspond to
different degrees, with the degree increasing from right to left. The error is computed after one
period. The time step size of each scheme is computed using its optimal CFL number from Fourier
stability analysis.
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Figure 4.40. Wall Clock Time (WCT) ratios versus grid resolution for 2-D Euler equations (isen-
tropic vortex). (a) WCT ratio of LW-D1 and LW-D2, (b) WCT ratio of RK and LW-D2. The error
is computed after one period. The time step size of each scheme is computed using its optimal CFL
number from Fourier stability analysis.

4.11.2. Double Mach reflection

We now test the double Mach reflection problem which was originally proposed byWood-
ward and Colella [197]. The problem consists of a shock impinging on a wedge/ramp
which is inclined by 30 degrees. An equivalent problem is obtained on the rectan-
gular domain 
 = [0; 4] � [0; 1] obtained by rotating the wedge so that the initial
condition now consists of a shock angled at 60 degrees. The solution consists of a
self similar shock structure with two triple points. Defining ub=ub(x; y; t) with prim-
itive variables given by

(�; u; v; p)=

8>><>>:
¡
8; 8.25 cos

¡ �
6

�
;¡8.25 sin

¡ �
6

�
; 116.5

�
if x< 1

6
+

y+ 20 t
3

p

(1.4; 0; 0; 1) if x> 1

6
+

y+ 20 t
3

p

we define the initial condition to be u0(x; y)=ub(x; y; 0). With ub, we impose inflow
boundary conditions at the left side f0g� [0;1], outflow boundary conditions both at [0;
1/6]�f0g and f4g� [0; 1], reflecting boundary conditions at [1/6; 4]�f0g and inflow
boundary conditions at the upper side [0; 4]�f1g. In Figure (4.41), we compare the
density plots obtained using the LWFR and RKFR schemes for N =2 at a resolution
of 960� 240 cells at t= 0.2. The non-linear TVB limiter is used with the parameter
M = 100 [137]. The Lax-Wendroff solution is computed using D2 dissipation and EA
scheme. We use GL points and Radau corrector in both LW and RK schemes. We
observe similar resolution for both schemes; the similarity holds for other degrees also,
which we have not shown to save space. In Figure 4.43a, we plot grid resolution against
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the Wall Clock Time for degrees N =1;2;3;4 which shows the expected dependence of
time with grid size. Figure 4.43b shows the ratio of WCT for RK and LW-D2 schemes,
indicating better efficiency of LW scheme, and these results are similar to what is
observed in [137].

(a) LWFR-D2 with EA scheme

(b) RKFR

Figure 4.41. Density profile of numerical solutions of 2-D Euler equations (double Mach reflection
problem) at t= 0.2 for N = 2, with �x=�y = 1/240. Contours of 30 steps from 1.4 to 22.5 are
printed.

(a) (b)

Figure 4.42. Enlarged contours of density (2-D Euler equations, double Mach reflection problem)
at t= 0.2 for N =2, with �x=�y=1/240. Contours of 30 steps from 1.4 to 22.5 are printed.

82 Lax-Wendroff Flux Reconstruction



240 × 60 480 × 120 960 × 240
Number of cells

102

103

104

W
al

l c
lo

ck
 ti

m
e 

[s
]

GL, Radau

LW-D2
RK

240 × 60 480 × 120 960 × 240
Number of cells

1.1

1.2

1.3

1.4

1.5

1.6

W
C

T(
R

K
) /

 W
C

T(
LW

-D
2)

GL, Radau

1
2
3
4

(a) (b)

Figure 4.43. Grid size versus WCT comparison of RK and LW schemes for 2-D Euler equations
(double Mach reflection problem). Time step of each scheme has been chosen with its optimal CFL
number from Fourier stability analysis.

4.12. Summary

A conservative, Jacobian-free and single step, explicit Lax-Wendroff method has been
constructed in a flux reconstruction context, and its implementation has been demon-
strated for solving hyperbolic conservation laws in one and two dimensions. The
Jacobian-free property is achieved by using a finite difference approach to compute
time derivatives of the fluxes that are needed in the Taylor expansion. The method
requires only the time average flux and its corresponding numerical fluxes. It is written
in matrix-vector form that is useful for computer implementation. We have studied
the effect of two commonly used correction functions and solution points. The stable
CFL numbers are computed using Fourier stability analysis in one and two dimen-
sions. The numerical fluxes are computed using both the time average flux and the time
average solution which leads to improved CFL numbers compared to other existing
methods which use the solution at previous time level to compute the dissipative
part of the numerical flux. At fifth order (N = 4), there is a mild linear instability
for periodic problems, which seems to be present in other single step methods and
also in RKDG schemes. For non-linear problems, we identify a loss of optimal con-
vergence rate when a simple average-extrapolate (AE) approach is used to compute
the central part of the numerical flux. We show that this can be improved to optimal
rates by using an extrapolate-average (EA) procedure, and the resulting schemes per-
form comparably with RK schemes in terms of their error levels. The performance
of the method is also demonstrated on 1-D and 2-D non-linear systems like Euler equa-
tions, where it is able to resolve all the waves at comparable accuracy to RK schemes.
Many commonly used numerical fluxes based on approximate Riemann solvers and
modeling even contact waves can be developed and used in these schemes. These

4.12 Summary 83



studies show that the Radau correction function in combination with Gauss-Legendre
solution points and the extrapolate-average (EA) technique leads to uniformly accu-
rate LW scheme for non-linear problems. The method has a simple structure which
makes it easy to develop a general code that can be used to solve any conserva-
tion law; the user has to supply subroutines for the flux, numerical flux, and maximum
wave speed estimate used in the CFL condition.

84 Lax-Wendroff Flux Reconstruction



Chapter 5

Admissibility preserving subcell limiter

5.1. Introduction

In this chapter, we develop a subcell based blending limiter for Lax-Wendroff Flux
Reconstruction (LWFR) motivated by the work of [90]. The idea is to break each
element into subcells and construct a robust low order method on the subcells. A
smoothness indicator is then used to blend the high order LWFR scheme with the low
order scheme, getting a robust limited scheme. In the development of the blending
scheme for LWFR, special attention has been paid to improving accuracy and obtaining
provable admissibility preservation. In contrast to [90], we use Gauss-Legendre solution
points because of their accuracy benefit known in the literature and also observed by us
in Chapter 4. The low order scheme on subcells is a finite volume method. A natural
choice is to use a first order finite volume method, but to enhance accuracy we develop
a MUSCL-Hancock scheme on the subcells. For admissibility preservation, we exploit
the subcell structure of the blending scheme to develop a problem independent flux
limiter that guarantees admissibility preservation in means.

The rest of this chapter is organized as follows. In Section 5.2, we formalize the
concept of admissibility of a physical and numerical (FR) solution of hyperbolic con-
servation laws (3.1). In Section 5.3, we explain the blending limiter including a review
of the smoothness indicator used in [90] and then MUSCL-Hancock reconstruction
performed on the subcells in Section 5.4. Maintaining conservation requires that at
the faces of FR elements, both the lower and high order schemes must use the same
numerical flux (see Remark 5.3). In Section 5.5, we show how to construct the numer-
ical flux to ensure admissibility preservation in means. In Section 5.6, we explain our
implementation of the Lax-Wendroff blended scheme as an algorithm. The numerical
results verifying accuracy and robustness of our scheme with 1-D and 2-D compressible
Euler equations are shown in Sections 5.7, 5.8, 5.9. Section 5.10 gives a summary of
the proposed blending scheme.

5.2. Admissibility preservation

The solution u2Rp of the conservation law (3.1) that is physically correct is assumed
to belong to an admissible set, denoted by Uad. For example, in case of compressible
flows, the density and pressure (or internal energy) must remain positive. In case of
shallow water equations, the water depth must remain positive. In most of the models
that are of interest, the admissible set is a convex subset of Rp, and can be written as

Uad= fu2Rp:Pk(u)> 0; 1� k�Kg (5.1)
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Moreover, in most cases, the admissibility constraints Pk are concave functions of the
conservative variables. In particular, we may have concavity of Pk if Pj>0 for all j <k.
For Euler's equations, K =2 and P1; P2 are density, pressure functions respectively; if
the density is positive then pressure is a concave function of the conserved variables.
This structure simplifies the slope and flux limiting steps to enforce admissibility (Sec-
tion 5.4.1, 5.5) and was assumed in [19]. However, there are models of interest where
the admissibility constraints are not concave functions of the conservative variables,
like ten moment equations which are considered in Chapter 6. For those models, our
admissibility enforcing procedure will instead use the following weaker assumption

Pj(ua);Pj(ub)>0; 8j�k =) Pj(�ua+(1¡�)ub)>�j(ua;ub); 8j�k (5.2)

In case of the Ten moment problem, �3(ua;ub) =
1

2
min (P3(ua); P3(ub)) (see (2.9) of

[125]). Thus, although the numerical experiments in this chapter are performed on
Compressible Euler's equations (2.13), we also discuss admissibility preservation in case
the admissibility constraints Pk are not concave functions of the conservative variables.

The high order Lax-Wendroff Flux Reconstruction scheme to solve the conserva-
tion law (3.1) is as described in Chapter 4. In particular, we use the discrete scheme
described in Section 4.2 with the time averaged numerical flux constructed using the
D2 dissipation and EA flux described in Section 4.3. We define the element mean value
of the numerical solution fue;pg (3.3) as

u�e=
X
p=0

N

ue;pwp

where wp are the weights associated to the solution points (3.2). Then, looking at the
LWFR update (4.4), it is easy to show that the scheme is conservative in the sense that

u�e
n+1=u�e

n¡ �t
�xe

(Fe+ 1

2

¡Fe¡ 1

2

) (5.3)

The admissibility preserving property, also known as convex set preservation property
since Uad is convex, of the conservation law can be written as

u(�; t0)2Uad =) u(�; t)2Uad; t > t0 (5.4)

and thus we define an admissibility preserving scheme to be

Definition 5.1. The flux reconstruction scheme is said to be admissibility preserving if

ue;p
n 2Uad 8e; p =) ue;p

n+12Uad 8e; p

where Uad is the admissible set of the conservation law.

To obtain an admissibility preserving scheme, we exploit the weaker admissibility
preservation in means property defined as
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Definition 5.2. The flux reconstruction scheme is said to be admissibility preserving
in the means if

ue;p
n 2Uad 8e; p =) u�e

n+12Uad 8e

where Uad is the admissible set of the conservation law.

The focus of this chapter is to obtain the admissibility preservation in means
property for the Lax-Wendroff Flux Reconstruction scheme. Once the scheme is admis-
sibility preserving in means, the scaling limiter of [206] can be used to obtain an
admissibility preserving scheme in the sense of Definition 5.1.

5.3. On controlling oscillations

High order methods for hyperbolic problems necessarily produce Gibbs oscillations at
discontinuities. In particular, it was shown by Godunov [81] that an oscillation free
linear scheme can be at most first order accurate. The cure is to make the schemes
to be non-linear even in the case of linear equations. For one dimensional problems,
total variation diminishing approach provides a framework to construct non-oscillatory
schemes. This is achieved by incorporating some non-linear limiting strategy into the
scheme which locally reduces the order of the scheme when a discontinuity is detected.
In discontinuous Galerkin type methods, the limiting is performed by modifying the
solution in each element so as to ensure a TVD property for the element means, which
was a strategy introduced by Cockburn and Shu [52, 51] and used in Chapter 4, as
described in Section 4.6. In this chapter, we introduce the blending scheme, motivated
and described in Section 5.3.1.

5.3.1. Blending scheme

In Chapter 4, TVD-type limiters of [52, 51] for DG methods were used. These limiters
lose a lot of information when the limiter is active, since the polynomial solution of
degree N is replaced either by a solution of degree 1 or a constant solution if a strong
discontinuity is detected in an element. This is especially problematic near smooth
extrema which may be wrongly detected as a discontinuity. It would be desirable to
use more information inside each element while applying some limiting process. Let
us write the LWFR update equation (4.4) as

ue
H;n+1=uen¡

�t
�xe

Re
H

where ue is the vector of nodal values in the element. Suppose we also have a lower
order and non-oscillatory scheme available to us in the form

ue
L;n+1=uen¡

�t
�xe

Re
L (5.5)
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Then a blended scheme is given by

ue
n+1=(1¡�e) ue

H;n+1+�e ue
L;n+1=uen¡

�t
�xe

[(1¡�e)Re
H+�eRe

L] (5.6)

where �e2 [0; 1] must be chosen based on some local smoothness indicator. If �e=0
then we obtain the high order LWFR scheme, while if �e=1 then the scheme becomes
the low order scheme that is less oscillatory. In subsequent sections, we explain the
details of the lower order scheme and the design of smoothness indicators. The lower
order scheme will either be a first order finite volume scheme (Section 5.3.3) or a high
resolution scheme based on MUSCL-Hancock idea (Section 5.4). In either case, the
common structure of the low order scheme can be explained as follows.

Fe−1
2

Fe+1
2

xe−1
2

xe+1
2

f1
2

f3
2

f5
2

f7
2

GL nodes

FR element

Subcells

(a)
Fe−1

2
Fe+1

2

xe−1
2

xe+1
2

f1
2

f3
2

f5
2

f7
2

GLL nodes

FR element

Subcells

(b)

Figure 5.1. Subcells used by lower order scheme for degree N =4 using (a) Gauss-Legendre (GL)
solution points, (b) Gauss-Legendre-Lobatto (GLL) solution points

Let us subdivide each element 
e into N + 1 subcells associated to the solution
points fxpe; p=0; 1; : : : ; N g of the LWFR scheme. Thus, we will have N +2 subfaces
denoted by fx

p+
1

2

e ; p=¡1;0; : : : ;N g with x¡1

2

e =xe¡ 1

2

and x
N+

1

2

e =xe+ 1

2

. For maintaining

a conservative scheme, the pth subcell is chosen so that

x
p+

1

2

e ¡x
p¡ 1

2

e =wp�xe; 0� p�N (5.7)

where wp is the pth quadrature weight associated with the solution points. Figure 5.1
gives an illustration of the subcells for degree N = 4 case. The low order scheme is
obtained by updating the solution in each of the subcells by a finite volume scheme,

ue;0
L;n+1 = ue;0

n ¡ �t
w0�xe

[f1

2

e¡Fe¡ 1

2

]

ue;p
L;n+1 = ue;p

n ¡ �t
wp�xe

[f
p+

1

2

e ¡ f
p¡ 1

2

e ]; 1� p�N ¡ 1

ue;N
L;n+1 = ue;N

n ¡ �t
wN�xe

[Fe+ 1

2

¡ f
N¡ 1

2

e ]

(5.8)
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The inter-element fluxes Fe+ 1

2

used in the low order scheme are same as those used in

the high order LWFR scheme in equation (4.8). The lower order fluxes f
p+

1

2

e will be

taken to be admissibility preserving finite volume fluxes (Definition 3.1). The element
mean value obtained by the low order scheme satisfies

u�e
L;n+1=

X
p=0

N

ue;p
L;n+1wp=u�e

n¡ �t
�xe

(Fe+ 1

2

¡Fe¡ 1

2

) (5.9)

which is identical to the update equation by the LWFR scheme given in equation (5.3).
The element mean in the blended scheme evolves according to

u�e
n+1 = (1¡�e) (u�e)H;n+1+�e (u�e)

L;n+1

= (1¡�e)
�
u�e
n¡ �t

�xe
(Fe+ 1

2

¡Fe¡ 1

2

)

�
+�e

�
u�e
n¡ �t

�xe
(Fe+ 1

2

¡Fe¡ 1

2

)

�
= u�e

n¡ �t
�xe

(Fe+ 1

2

¡Fe¡ 1

2

)

(5.10)

and hence the blended scheme is also conservative; all three schemes, i.e., lower order,
LWFR and the blended scheme, predict the same mean value.

The inter-element flux Fe+ 1

2

is used both in the low and high order schemes. To

achieve high order accuracy in smooth regions, this flux needs to be high order accurate,
however it may produce numerical oscillations near discontinuities when used in the low
order scheme. A natural choice to balance accuracy and spurious oscillations is to take

Fe+ 1

2

=(1¡�e+ 1

2

)F
e+

1

2

LW+�e+ 1

2

fe+ 1

2

; �e+ 1

2

2 [0; 1] (5.11)

where F
e+

1

2

LW is the high order inter-element time-averaged numerical flux of the LWFR

scheme (4.8) and fe+ 1

2

is an admissibility preserving low order flux (Definition 3.1)

at the face xe+ 1

2

shared between FR elements and subcells (5.14, 5.20). The blending

coefficient �e+ 1

2

will be based on a local smoothness indicator which will bias the flux

towards the lower order flux fe+ 1

2

near regions of lower solution smoothness. However,

to enforce admissibility in means (Definition 5.2), the flux has to be further corrected,
as explained in Section 5.5.

Remark 5.3.
a) It is essential to use the same inter-element flux in both the low and high order

schemes in order to have conservation. Suppose we use numerical fluxes F
e+

1

2

L ;

F
e+

1

2

H in the low and high order schemes, respectively; then the element mean

in the blended scheme will become

u�e
n+1=u�e

n¡ �t
�xe

[((1¡�e)Fe+ 1

2

H +�eFe+ 1

2

L )¡ ((1¡�e)Fe¡ 1

2

H +�eFe¡ 1

2

L )]

For conservation the flux leaving element 
e through xe+ 1

2

must enter the neigh-
bouring element 
e+1, i.e.,

(1¡�e)Fe+ 1

2

H +�eFe+ 1

2

L =(1¡�e+1)Fe+ 1

2

H +�e+1Fe+ 1

2

L
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i.e., (�e¡ �e+1)Fe+ 1

2

L = (�e¡ �e+1)Fe+ 1

2

H which must hold for all values of �e;

�e+1 and hence we need F
e+

1

2

L =F
e+

1

2

H .

b) The contribution to Re
L; Re

H of the flux Fe+ 1

2

has coefficients given by �t

wN�xe
;

�t

�xe
gR
0 (�N) respectively, as can be seen from (5.8, 8.28). If we use g2 correction

functions with Gauss-Legendre-Lobatto solution points, we have from (B.6),
gR
0 (�N)=`N(1)/wN=1/wN. Thus, the coefficient is the same for both higher and

lower order residuals and we add the contribution without a blending coefficient.
This is different from the case of Gauss-Legendre solution points where the
coefficients disagree as 1/wN =/ `N(1)/wN = gR

0 (�N) (B.6).

5.3.2. Smoothness indicator
The numerical approximation of the PDE solution is in the form of piecewise polyno-
mials of degree N . The polynomial can be written in terms of an orthogonal basis like
Legendre polynomials. The smoothness of the solution can be assessed by analyzing the
decay of the coefficients of the orthogonal expansion, a technique originally proposed
by Persson and Peraire [134] and subsequently refined by Klöckner et al. [102] and
Henemann et al. [90]. For a scalar problem, the solution u itself can be used to design
a smoothness indicator. For a system of PDE, we can use any one or all components
of the solution vector. Alternatively, some derived quantity that can indicate the
smoothness of all solution components can be chosen. For the Euler equations, a good
choice seems to be the product of density and pressure [90].

Let q = q(u) be the quantity used to measure the solution smoothness. We first
project this onto Legendre polynomials,

qh(�)=
X
j=0

N

q̂jLj(2 �¡ 1); � 2 [0; 1]; q̂j=

Z
0

1

q(uh(�))Lj(2 �¡ 1) d�

The Legendre coefficients q̂j are computed using the quadrature induced by the solu-
tion points,

q̂j=
X
q=0

N

q(ue;q)Lj (2 �q¡ 1)wq

Then the energy contained in the highest modes relative to the total energy of the
polynomial is computed as follows,

E=max

 
q̂N¡1
2P
j=0
N¡1 q̂j

2
;

q̂N
2P

j=0
N q̂j

2

!
(5.12)

The N th Legendre coefficient q̂N of a function which is in the Sobolev space H2 decays
as O(1/N2) (see Chapter 5, Section 5.4.2 of [37]). We consider smooth functions to be
those whose Legendre coefficients q̂N decay at a rate proportional to 1/N2 or faster
so that their squares decay proportional to 1/N4 [134] or faster. Thus, the following
dimensionless threshold for smoothness is proposed in [90]

T(N)= a � 10¡c(N+1)4
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where parameters a= 1

2
and c= 1.8 are obtained through numerical experiments. To

convert the highest mode energy indicator E and threshold value T into a value in [0;
1], the logistic function (Figure 5.2) is used

�~(E)=
1

1+ exp (¡ s

T
(E¡T))

0.00 0.01 0.02 0.03 0.04 0.05
0.0

0.2

0.4

0.6

0.8

1.0
Blending coefficient function

1
2
3
4

Figure 5.2. Logistic function used to map energy to a smoothness coefficient �2 [0; 1] shown for
various solution polynomial degrees N .

The sharpness factor s was chosen to be s= 9.21024 so that blending coefficient
equals �=0.0001 when highest energy indicator E=0. In regions where �~=0 or �~=1,
computational cost can be saved by performing only the lower order or higher order
scheme respectively. Thus, the values of � are clipped as

�e :=

8>><>>:
0; if �~<�min

�~; if �min��~� 1¡�min

1; if 1¡�min<�~

with �min= 0.001. Finally, since shocks can spread to the neighbouring cells as time
advances, some smoothening of � is performed as

�e
final=max

E2Ee

�
�e;

1
2
�E

�
(5.13)

where Ee denotes the set of elements sharing a face with 
e.

5.3.3. First order blending

The lower order scheme is taken to be a first order finite volume scheme, for which the
subcell fluxes in (5.8) are given by

f
p+

1

2

e = f(ue;p;ue;p+1)
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At the interfaces that are shared with FR elements, we define the lower order flux used
in computing inter-element flux (Section 5.5) as

fe+ 1

2

= f(ue;N ;ue+1;0) (5.14)

In this chapter, the numerical flux f(�; �) is taken to be Rusanov's flux [152], which is
the same flux used by the higher order scheme at the element interfaces.

5.4. Higher order blending

The MUSCL-Hancock scheme is a single-stage and second order accurate scheme,
originally introduced in [185], and proven to be robust under appropriate slope restric-
tions [26]. We can expect better accuracy by blending the LWFR scheme with the
MUSCL-Hancock scheme. Following the slope correction procedure of Berthon [26],
the MUSCL-Hancock scheme can mimic the admissible set preservation of the solu-
tions of conservation laws (5.4). The extension of Berthon's work to non-cell centered
grids (G.3) which arise in the blending scheme is given in Theorem 5.4 whose proof is
given in Appendix G. In this section, we give algorithmic details of the 1-D procedure
and details of the 2-D procedure can be found in Appendix G.6.

Essentially, the MUSCL-Hancock scheme provides a high order estimate of the
subcell fluxes f

p+
1

2

e used in the low order scheme (5.8) and we now explain the proce-

dure for estimating these fluxes. The procedure below can be used for any choice of
solution points. However, in this thesis, all results with MUSCL-Hancock scheme have
been generated using Gauss-Legendre solution points. To simplify the notation, let us
suppress the element index e and set

u¡2=uN¡1
e¡1 ; u¡1=uN

e¡1; fup=ue;p; 0� p�N g; uN+1=u0
e+1; uN+2=u1

e+1

Using the mid-point rule in time to integrate the conservation law (3.1) over the space-
time element [xp¡ 1

2

; xp+ 1

2

]� [tn; tn+1], we get

up
n+1=up

n¡ �t
�xp

(f
p+

1

2

n+
1

2¡ f
p¡ 1

2

n+
1

2) (5.15)

where

f
p+

1

2

n+
1

2 = f(up¡1
n+

1

2
;+
;up

n+
1

2
;¡
) (5.16)

is obtained from a numerical flux function. The numerical flux in (5.16) is taken to be
Rusanov's flux [152] in this work, but any admissibility preserving finite volume flux

(Definition 3.1) can be used. The up
n+

1

2
;�

denote the approximations of solutions in
subcell p at right, left faces respectively, evolved to time level n+ 1

2
. Aiming to first

approximate the solution at tn on the faces, we create a linear approximation of the
solution in each subcell as

rp
n(x)=up

n+(x¡ xp) �p; �p=minmod(��+up;�cup; ��¡up) (5.17)
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where, for h1=xp¡xp¡1, h2=xp+1¡xp,5.1

�+up=
up+1
n ¡upn
h2

; �¡up=
up
n¡up¡1n

h1

�cup=¡
h2

h1 (h1+h2)
up¡1
n +

h2¡h1
h1h2

up
n+

h1
h2 (h1+h2)

up+1
n

The ��up are forward and backward approximations of slope respectively, and �cup
is the second order approximation of the slope. The value � is chosen to lie between
1 and 2; for � = 1, we reduce to the minmod limiter and � = 2 corresponds to the
MC (monotonized central-difference) limiter of van Leer [184]. A higher value of �
tips the slope closer to the second order approximation, gaining accuracy but also
increasing the risk of spurious oscillations. For all results in this chapter, the choice of
�=2¡�e is made. Thus, � will be close to 2 in regions where smoothness indicator
only detects mild irregularities in the solution, while it will be near 1 in regions with
strong discontinuities. With the linear reconstructions, we can define

up
n;¡=rp

n(xp¡1

2

)=up
n+�p(xp¡ 1

2

¡xp); up
n;+=rp

n(xp+ 1

2

)=up
n+�p(xp+ 1

2

¡xp) (5.18)

Using the conservation law, we approximate the temporal derivatives as

@tup
n :=¡f(up

n;+)¡ f(upn;¡)
xp+ 1

2

¡xp¡ 1

2

and finally use Taylor's expansion to evolve the face values in time as

up
n+

1

2
;¡
=up

n;¡+
�t
2
@tup

n; up
n+

1

2
;+
=up

n;++
�t
2
@tup

n (5.19)

At the interfaces shared with the FR elements, the lower order flux used in computing

inter-element flux (Section 5.5) is given by fe+ 1

2

= f
N+

1

2

n+
1

2; the dependence on neigh-
bouring states can be made explicit as

fe+ 1

2

= f(uN¡1
e ;uN

e ;u0
e+1;u1

e+1) (5.20)

For admissibility of the lower order method, we rely on the following generalization of
Berthon [26], proved in Appendix G.

Theorem 5.4. Consider a conservation law of the form (3.1) which preserves the
admissible set Uad (5.4). Let fupngp be the approximate solution at time level n and
assume that upn2Uad for all p. Consider conservative reconstructions

up
n;+=up

n+(xp+ 1

2

¡xp)�p; up
n;¡=up

n+(xp¡ 1

2

¡xp)�p

Define up
�;� by

�¡up
n;¡+up

�;�+ �+up
n;+=2up

n;� (5.21)

5.1. In case of Gauss-Legendre-Lobatto points, the slope �p=0 is used in (5.17) whenever h1=0 or h2=0.
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where

�¡=
xp+ 1

2

¡xp
xp+ 1

2

¡ xp¡ 1

2

; �+=
xp¡xp¡ 1

2

xp+ 1

2

¡xp¡ 1

2

Assume that the slope �p is chosen so that

up
�;�2Uad (5.22)

Then, assuming that the first order finite volume flux used in (5.16) is admissibility pre-
serving (Definition 3.1), under appropriate time step restrictions (G.10, G.13, G.19),
the updated solution up

n+1 defined by the MUSCL-Hancock procedure (5.15) is in Uad.

5.4.1. Slope limiting in practice
A problem-independent procedure for slope limiting to ensure admissibility preserva-
tion is proposed, in contrast to the original procedure for Euler's equations in [26] that
was extended to the 10-moment problem in [124]. For the MUSCL-Hancock scheme
to be admissibility preserving, the slope �p given by the minmod limiter (5.17) has to
be further limited so that up

�;�=up
n+2(xp� 1

2

¡xp)�p2Uad (5.21). Let fPk;1�1�Kg
be the admissibility constraints (5.1) for the conservation law (3.1) to be in Uad. The
slope is limited by iterating over the constraints. For each constraint, we can solve an
optimization problem to find the largest ��2 [0; 1] satisfying

Pk(up
n+2 �� (xp� 1

2

¡ xp) �p)=Pk(��up
�;�+(1¡ ��)upn)� �p; p=0; N (5.23)

where �p is a tolerance, taken to be 1

10 Pk(up
n) [151]. The optimization problem is

usually a polynomial equation in �, and can be solved for its root. In this work, we use
a general iterative solver that is independent of choice of Pk (Appendix F). If Pk is a
concave function of the conserved variables, we can follow [19] and use the simpler but
possibly sub-optimal approach of defining

��=min

 
min
p=0;N

���������� �p¡Pk(upn)
Pk(up

�;�)¡Pk(upn)

����������; 1
!

(5.24)

In either case, by iterating over the admissibility constraints fPkg of the conservation
law, the flux slope limiting is performed by the following for loop
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
�p minmod(��+up;�cup; ��¡up)

up
�;� up

n+2 (xp� 1

2

¡xp)�p
for k=1:K do

�k=
1

10 Pk(up
n)

Find �� by solving (5.23) or by using (5.24) if Pk is concave
�k min f�+; �¡g
�p �k �p
up
�;� up

n+2 (xp� 1

2

¡xp) �p
end for
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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At the kth iteration, solving the optimization problem (5.23) will satisfy the con-
straint Pk by definition. On the other hand, if we use (5.24) in case Pk is concave, the
up
�;� computed with the corrected slope �p will satisfy

Pk(up
�;�)=Pk (�k(up

�;�)prev+(1¡�k)upn)��kPk ((up�;�)prev)+(1¡�k)Pk(upn)��k (5.25)

so that the kth admissibility constraint is satisfied; here (up
�;�)prev denotes up

�;� before
the kth correction. The choice of �k =

1

10 Pk(up
n) was made following [151] to allow

only a certain deviation below the safe solution, imposing a stricter requirement than
positivity. Note that this limiting is performed on the slope used for reconstruction
in the MUSCL-Hancock scheme, and not on the updated solution. We now use an
inductive argument to show that the kth correction will continue to satisfy the previous
admissibility constraints. Thus, we assume that constraint Pl is satisfied by (up

�;�)prev

for all l < k and we perform kth correction on it to obtain up
�;�. In case of concave

admissibility constraints,

Pl(up
�;�) = Pl(�k (up

�;�)prev+(1¡ �k)upn) (5.26)
� �kPl((up

�;�)prev)+ (1¡ �k)Pl(upn)� �k �l+(1¡ �k) �l= �l

In case of non-concave Pl, we use (5.2) to obtain Pl(up
�;�) > �l((up

�;�)prev; up
n) > 0

from (5.25). Thus, in both cases, constraints Pl are satisfied for all l < k and the
slope �p obtained at the end of K iterations satisfies all admissibility constraints
ensuring up

�;�2Uad.

5.5. Flux limiter for admissibility preservation

The first step in obtaining an admissibility preserving blending scheme is to ensure
that the lower order scheme preserves the admissible set Uad. This is always true if
all the fluxes in the lower order method are computed with a finite volume method
that is proven to be admissibility preserving. However, the LWFR scheme uses a time
average numerical flux and maintaining conservation requires that we use the same
numerical flux at the element interfaces for both lower and higher order schemes (see
Remark 5.3). To maintain accuracy and admissibility, we have to carefully choose a
blended numerical flux Fe+ 1

2

as in (5.11) but this choice may not ensure admissibility,

and further limitation is required. Our proposed procedure for choosing the blended
numerical flux will give us an admissibility preserving lower order scheme. After this
step, there are two possibilities for obtaining admissibility of the blending scheme. We
could follow the procedure of [151] to a posteriori modify the blending coefficient � to
obtain admissibility relying directly on the admissibility of the lower order scheme. The
other option which we take in this thesis is to note that, as a result of using the same
numerical flux in both high and low order schemes, element means of both schemes
are the same (Theorem 5.5). A consequence of this is that our scheme now preserves
admissibility of element means and thus we can use the scaling limiter of [205]. The
latter approach of correcting element means to obtain a positivity preserving Lax-
Wendroff scheme has been used in [128], where the numerical flux is corrected to
directly make element means admissible. In comparison to [128], our procedure for
ensuring admissibility of element means requires less storage and loops.
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The theoretical basis for flux limiting can be summarised in the following The-
orem 5.5.

Theorem 5.5. Consider the LWFR blending scheme (5.6) where low and high order
schemes use the same numerical flux Fe+ 1

2

at every element interface. Then the fol-

lowing can be said about admissibility preserving in means property (Definition 5.2) of
the scheme:

1. element means of both low and high order schemes are same and thus the blended
scheme (5.6) is admissibility preserving in means if and only if the lower order
scheme is admissibility preserving in means;

2. if the finite volume method using the lower order flux fe+ 1

2

as the interface

flux is admissibility preserving, such as the first-order finite volume method or
the MUSCL-Hancock scheme with CFL restrictions and slope correction from
Theorem 5.4, and the blended numerical flux Fe+ 1

2

is chosen to preserve the

admissibility of lower-order updates at solution points adjacent to the interfaces,
then the blending scheme (5.6) will preserve admissibility in means.

Proof. By (5.3, 5.9), element means are the same for both low and high order schemes.
Thus, admissibility in means of one implies the same for other, proving the first claim.
For the second claim, note that our assumptions imply ue;p

L;n+1 given by (5.8) is in
Uad for 0� p�N implying admissibility in means property of the lower order scheme
by (5.9) and thus admissibility in means for the blended scheme. �

We now explain the procedure of ensuring that the update obtained by the lower
order scheme will be admissible. The lower order scheme is computed with a first order
finite volume method or MUSCL-Hancock with slope correction from Theorem 5.4 so
that admissibility is already ensured for inner solution points; i.e., we already have

ue;p
L;n+12Uad; 1� p�N ¡ 1

The remaining admissibility constraints for the first (p= 0) and last solution points
(p=N) will be satisfied by appropriately choosing the inter-element flux Fe+ 1

2

. The first

step is to choose a candidate for Fe+ 1

2

which is heuristically expected to give reasonable

control on spurious oscillations, i.e.,

Fe+ 1

2

=(1¡�e+ 1

2

)F
e+

1

2

LW+�e+ 1

2

fe+ 1

2

; �e+ 1

2

=
�e+�e+1

2

where fe+ 1

2

is the lower order flux at the face e+ 1

2
shared between FR elements and

subcells (5.14, 5.20), and �e is the blending coefficient (5.6) based on element-wise
smoothness indicator (Section 5.3.2).
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The next step is to correct Fe+ 1

2

to enforce the admissibility constraints. The guiding

principle of our approach is to perform the correction within the face loops, min-
imizing storage requirements and additional memory reads. The lower order updates
in subcells neighbouring the e+ 1

2
face with the candidate flux are

u
�

0
n+1 = ue+1;0

n ¡ �t
w0�xe+1

(f1

2

e¡Fe+ 1

2

)

u
�

N
n+1 = ue;N

n ¡ �t
wN�xe

(Fe+ 1

2

¡ f
N¡ 1

2

e )
(5.27)

To correct the interface flux, we will again use the fact that first order finite volume
method and MUSCL-Hancock with slope correction from Theorem 5.4 preserve admis-
sibility, i.e.,

u
�

0
low;n+1 = ue+1;0

n ¡ �t
w0�xe+1

(f1

2

e¡ fe+ 1

2

)2Uad

u
�

N
low;n+1 = ue;N

n ¡ �t
wN�xe

(fe+ 1

2

¡ f
N¡ 1

2

e )2Uad

Let fPk;1�1�Kg be the admissibility constraints (5.1) of the conservation law (3.1).
For each constraint, we can solve an optimization problem to find the largest �2 [0; 1]
satisfying

Pk(�u
�

p
n+1+(1¡ �)u

�

p
low;n+1)>�p; p=0; N (5.28)

where �p is a tolerance, taken to be 1

10 Pk(u
�

p
low;n+1) [151]. The optimization problem

is usually a polynomial equation in �, and can be solved for its root. In this work, we
use a general iterative solver that is independent of choice of Pk (Appendix F). If Pk
is a concave function of the conserved variables, we can follow [19] and use the simpler
but possibly sub-optimal approach of defining

�=min

 
min
p=0;N

���������� �p¡Pk(u
�

p
low;n+1)

Pk(u
�

p
n+1)¡Pk(u

�

p
low;n+1)

����������; 1
!

(5.29)

In either case, by iterating over the admissibility constraints fPkg of the conservation
law, the flux F

e+
1

2

LW can be corrected using the iterative limiting procedure in Algo-
rithm 5.1.
Algorithm 5.1

Flux limiter

Fe+ 1

2

 (1¡�e+ 1

2

)F
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1

2

LW+�e+ 1

2

fe+ 1

2

B Initial guess

for k=1:K do
�0; �N 1

10 Pk(u
�

0
low;n+1);

1

10 Pk(u
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N
low;n+1)

Find � by solving (5.28) or by using (5.29) if Pk is concave
Fe+ 1

2

 �Fe+ 1

2
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end for
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In case of solving an optimization problem (5.28), the admissibility constraint Pk
will be satisfied after the kth iteration of Algorithm 5.1 by definition of the optimization
problem. In the case of concave Pk, if (5.29) is used, after the kth iteration, the updates
computed using flux Fe+ 1

2

will satisfy for p=0; N

Pk(u
�

p
n+1) = Pk(�(u

�

p
n+1)prev+(1¡ �)u

�

p
low;n+1)

� � Pk((u
�

p
n+1)prev)+ (1¡ �)Pk(u

�

p
low;n+1)� �p

satisfying the kth admissibility constraint; here (u
�

p
n+1)prev denotes u

�

p
n+1 before the kth

correction and the choice of �p=
1

10 Pk(u
�

p
low;n+1) is made following [151]. After the K

iterations, all admissibility constraints will be satisfied and the resulting flux Fe+ 1

2

will

be used as the interface flux keeping the lower order updates and thus the element
means admissible. Thus, by Theorem 5.5, the choice of blended numerical flux gives
us admissibility preservation in means. We now use the scaling limiter of [205] to
obtain an admissibility preserving scheme as defined in Definition 5.1, an overview of
the complete scheme can be found in Algorithm 5.2. The above procedure is for 1-
D conservation laws; the extension to 2-D is performed by breaking the update into
convex combinations of 1-D updates and adding additional time step restrictions; the
details are given in Appendix H.

5.6. Some implementation details

In Section 5.5, the procedure for computing the blended numerical flux to achieve
admissibility preservation in means for LWFR (Definition 5.2) was presented. In this
section, we present an overview of the complete LWFR blended scheme which employs
the computed blended flux and the scaling limiter of [205] to obtain an admissibility
preserving scheme (Definition 5.1) in Algorithm 5.2.

The residual in (5.6) is computed by performing an element loop and a face loop,
incorporating blending within each of these loops. Within the element loop, we com-
pute lower order fluxes on the subcell faces not shared by the FR elements. The
fluxes for the faces shared by FR elements are computed within the face loop, and
subsequently blended with the LW flux. This approach enables direct computation
and use of each quantity, without the need for intermediate storage. However, to
compute (5.27), admissibility preservation requires storage of lower order fluxes f1

2

e and
f
N¡ 1

2

e , which are computed during the element loop.

In Algorithm 5.2, we give a high level overview of the LWFR with blending scheme.
In the implementation, some operations are avoided by computing only high or low
order residuals in the cases where �e=0 or �e=1, but we did not include this opti-
mization in Algorithm 5.2 to maintain simplicity in our explanation. The correction
procedure of numerical flux for admissibility preservation (Section 5.5) is performed
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within the interface iteration. The contribution of numerical flux to the residual is
added in a different element loop to avoid race conditions in a multi-threaded loop; only
one loop would be needed in a serial code. After the solution update in Algorithm 5.2,
the blended flux will ensure that our purely low order update and the element means
are admissible. However, the updates at solution points need not be admissible at this
stage and must be corrected. The correction at solution points could now be performed
as an a posteriori modification of the blending coefficients [151] or using the scaling
limiter of [205]; we use the scaling limiter for all results in this work.

Algorithm 5.2

High-level overview of the Lax-Wendroff with blending scheme
t=0;
while t<T do66666666666666666666666666666666666666666666666666666666666666666666666666666666666666664

Compute f�eg (Section 5.3.2)

BAssemble element residual
for e in eachelement(mesh) do666666664 Add LW element residual to rhs scaled with 1¡�e
Add FV subcell residual to rhs scaled with �e
Store f1/2

e ; fN¡1/2
e (5.27)

end for

BCompute numerical fluxes at all interfaces
for e+ 1

2
in eachinterface(mesh) doj

Compute F
e+

1

2

LW, fe+ 1

2

and blend them into Fe+ 1

2

(Section 5.5)

end for

BAssemble face residual
for e in eachelement(mesh) doj
Add contribution of Fe� 1

2

to high, low order residual scaled with 1¡�e; �e
end for
Update solution
Apply positivity correction at solution points using [205] or [151]
t= t+�t;

end while

5.7. Numerical results

We perform various tests to show the robustness and accuracy of the proposed blending
scheme. The LWFR results are always obtained with D2 dissipation and EA flux [18]
with Rusanov's numerical flux using Gauss-Legendre solutions point and Radau cor-
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rection functions. All numerical simulations were run with the first order blending
(Section 5.3.3), MUSCL-Hancock blending (Section 5.4) and TVB limiter with fine-
tuned parameter M plotted with legends FO, MH and TVB-M. We also made com-
parison with the results of first order blending scheme using Gauss-Legendre-Lobatto
points of [90] implemented in Trixi.jl [141, 158]. Our code is publicly available at [17],
and the scripts for generated results in this chapter are available at [16]. The user only
needs to install Julia [29] and the remaining dependencies are automatically handled
by Julia environments and its package manager.

5.7.1. 1-D Euler equations

As an example of system of non-linear hyperbolic equations, consider the one-dimen-
sional Euler equations of gas dynamics given by (4.16). Unless otherwise specified, the
gas constant 
 will be taken as 1.4 which is the value for air. The time step size for
polynomial degree N is computed as in (4.18). Most of the numerical results presented
in this chapter use degree N =4 for which CFL(N)= 0.069. The admissibility preser-
vation of subcell based MUSCL-Hancock imposes a time restriction (Theorem 5.4)
which depends on several quantities other than element means, including some evolved
quantities, see equations (G.10, G.13, G.19). The CFL coefficient of MUSCL-Hancock
admissibility is also smaller than CFL(N) in (4.18), see Remark G.7. However, we have
found the time step given by (4.18) with CCFL= 0.98 to be sufficient for admissibility
preservation in all the simulations we have performed. Thus, we do not explicitly
impose the CFL restrictions in Theorem 5.4 as they are more severe and expensive
to compute. If the admissibility is violated in any cell, then the time update can be
repeated in those cells by lowering the time step by some fraction.

5.7.1.1. Shu-Osher problem

This problem was described in Section 4.8.4. Due to presence of both spurious oscil-
lations and smooth extremums, this becomes a good test for testing robustness and
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accuracy of limiters. We discretize the spatial domain with 400 cells using polynomial
degree N = 4 and compare blending schemes and TVB limiter with parameter M =
300 [137]. The density component of the approximate solutions computed for the
compared limiters are plotted against a reference solution obtained using a very fine
mesh, and are given in Figures 5.3, 5.4. The three limiters show similar performance in
Figure 5.3 on the large scale. The enlarged plots in Figure 5.4 show that the MUSCL-
Hancock blending scheme is able to capture smooth extrema better than the first order
blending and the TVB scheme.
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Figure 5.3. Shu-Osher problem, density plot of numerical solution with degree N =4 using first
order (FO) and MUSCL-Hancock (MH) blending schemes, and TVB limited scheme (TVB-300) with
parameter M = 300.
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Figure 5.4. Shu-Osher problem, density plot of numerical solution with degree N =4 using first
order (FO) and MUSCL-Hancock (MH) blending schemes, and TVB limited scheme (TVB-300)
with parameter M = 300 at time t= 1.8 on a mesh of 400 cells.. (a) Zoomed near smooth extrema,
(b) Zoomed to only show two extrema.

5.7.1.2. Blast wave

This test case was described in Section 4.8.5. The solution consists of reflection of
shocks and expansion waves off the boundary wall and several wave interactions inside
the domain. The numerical solutions are inadmissible if the positivity correction is not
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applied. With a grid of 400 cells using polynomial degree N =4, we run the simulation
till the time t=0.038 where a high density peak profile is produced. As in the previous
test, we compare first order (FO) and MUSCL-Hancock (MH) blending schemes, and
TVB limiter with parameter M = 300 [137] (TVB-300). We compare the performance
of limiters in Figure 5.5 where the approximated density and pressure profiles are
compared with a reference solution computed using a very fine mesh. Looking at the
peak amplitude and contact discontinuity of the density profile which is also shown
in the zoomed inset, it is clear that MUSCL-Hancock blending scheme gives the best
resolution, especially when compared with the TVB limiter.
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Figure 5.5. Blast wave problem, numerical solution with degree N =4 using first order (FO) and
MUSCL-Hancock (MH) blending schemes, and TVB limited scheme (TVB-300) with parameter
M = 300. (a) Density, (b) pressure profiles are shown at time t= 0.038 on a mesh of 400 cells.

5.7.1.3. Sedov's blast wave

To demonstrate the admissibility preserving property of our scheme, we simulate
Sedov's blast wave [160]; the test describes the explosion of a point-like source of
energy in a gas. The explosion generates a spherical shock wave that propagates out-
wards, compressing the gas and reaching extreme temperatures and pressures. The
problem can be formulated in one dimension as a special case, where the explosion
occurs at x = 0 and the gas is confined to the interval [¡1; 1] by solid walls. For
the simulation, on a grid of 201 cells with solid wall boundary conditions, we use
the following initial data [207],

�=1; v=0; E(x)=

(
3.2� 106

�x
; jxj � �x

2

10¡12; otherwise

where �x is the element width. This is a difficult test for positivity preservation
because of the high pressure ratios. Nonphysical solutions are obtained if the proposed
admissibility preservation corrections are not applied. The density and pressure profiles
at t = 0.001 obtained using blending schemes are shown in Figure 5.6. Results of
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TVD limiter are not shown as it fails to preserve positivity in this test because the
admissibility correction of Lax-Wendroff scheme depends on the blended numerical flux
(Section 5.5).
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Figure 5.6. Sedov's blast wave problem, numerical solution with degree N = 4 using first order
(FO) and MUSCL-Hancock blending schemes. (a) Density and (b) pressure profiles of numerical
solutions are plotted at time t= 0.001 on a mesh of 201 cells.

5.7.1.4. Riemann problems

We test two extreme Riemann problems from [205] to demonstrate admissibility
preservation of our scheme. The first is a Riemann problem with no shocks and two
rarefactions, which move away from each other leading to a near vacuum state in
the exact solution. The low densities make it a challenging test, as the oscillations
can easily cause negative density values. As in the previous test, results of TVD
limiter are not shown as it fails to preserve admissibility. We run the simulation
on the domain [¡1; 1] with initial data

(�; v; p)=

�
(7.0;¡1.0; 0.2); ¡1�x� 0
(7.0; 1.0; 0.2); otherwise

The results obtained using blending schemes are shown in Figure 5.7 on a mesh of 200
cells with transmissive boundary conditions at time t= 0.6.

The second test is a 1D Leblanc shock tube problem with initial data

(�; v; p)=

(
(2; 0; 109); ¡1� x� 0
(0.001; 0; 1); otherwise

The solution has extremely high density and pressure ratios across the shock and the
numerical solutions give negative pressure if the proposed admissibility preservation
techniques are not applied. The log-scaled results obtained using blending schemes are
shown in Figure 5.8 at time t=0.001 on a mesh of 800 cells with transmissive boundary
conditions.
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Figure 5.7. Double rarefaction problem, numerical solution with degreeN=4 using first order (FO)
and MUSCL-Hancock (MH) blending. (a) Density and (b) pressure profiles of numerical solutions
are plotted at t= 0.6 on a mesh of 200 cells.

4 2 0 2 4 6 8 10
x

10 3

10 2

10 1

100

D
en

si
ty

t = 0.001, N = 4, NC = 800

Exact
FO
MH

4 2 0 2 4 6 8 10
x

101

103

105

107

109

Pr
es

su
re

t = 0.001, N = 4, NC = 800

Exact
FO
MH

(a) (b)

Figure 5.8. Leblanc's test, numerical solution with polynomial degree N =4 using first order (FO)
and MUSCL-Hancock (MH) blending. (a) Density and (b) pressure profiles of numerical solutions
with log scales are plotted at t= 0.001 on a mesh of 800 cells.

5.8. 2-D advection equation

The description of this test is provided in Section 4.10.2. The numerical solution is
computed at t=2� and shown in Figure 5.9a after one time period, comparing different
limiters Figure 5.9b-c. To be specific, Figure 5.9 compares contour plots of polynomial
solutions obtained using the LWFR method of degree N =4 with TVB limiter using a
fine-tuned parameterM=100, and with blending limiter using first order and MUSCL-
Hancock reconstructions, after one time period. The blending limiter with MUSCL-
Hancock reconstruction is shown to produce more accurate solutions among the three
profiles especially when compared to the TVB limiter, as the TVB limiter results in
greater smearing of the profile. The sharp features of slotted disc profile show the most
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notable improvement.

(a) Exact (b) TVB with M = 100

(c) FO blending (d) MH blending

Figure 5.9. Rotation of a composite signal with velocity a=(1
2
¡ y;x¡ 1

2
), numerical solution with

polynomial degree N =4 on a mesh of 1002 elements.

5.9. 2-D Euler equations

We consider the two-dimensional Euler equations of gas dynamics given by (2.13).
Unless otherwise specified, the adiabatic constant 
 will be taken as 1.4 in the numer-
ical tests, which is the typical value for air. The time step size for polynomial degree
N is computed as in (4.30). Most of the numerical results presented in this chapter
use degree N =4 for which CFL(N)= 0.069 (4.30). As in the 1-D case, (4.30) will not
guarantee that the time step restriction for admissibility of MUSCL-Hancock scheme
on the subcells is satisfied. However, we have found all tests to work with (4.30) using
CCFL=0.98 and the results are shown with that safety factor unless otherwise specified.

For verification of numerical results and to demonstrate the accuracy gain of our
proposed Lax-Wendroff blending scheme with MUSCL-Hancock reconstruction using
Gauss-Legendre points, we will compare our results with the first order blending scheme
using Gauss-Legendre-Lobatto (GLL) points of [90] available in Trixi.jl [141]. Both
solvers use the same time step sizes in all results. We have also performed exper-
iments using LWFR with first order blending scheme and Gauss-Legendre (GL) points,
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and observed lower accuracy than the MUSCL-Hancock blending scheme, but higher
accuracy than the first order blending scheme implementation of Trixi.jl using GLL
points. These results are expected since GL points and quadrature are more accu-
rate than GLL points, and MUSCL-Hancock is also more accurate than first order
finite volume method. However, to save space, we have not presented the results of
LWFR with first order blending.

5.9.1. Isentropic vortex convergence test

The description of this test containing a smooth solution with an analytic solution has
been given in Section 4.11.1. We run the computations up to a time t= T when the
vortex has crossed the domain once in the diagonal direction. Figure 4.38a compares
the L2 error of density sampled at N + 3 equispaced points against grid resolution
when using the blending limiter. It can be seen that the limiter does not activate
for adequately high resolution, yielding the same optimal convergence rates as those
achieved without the limiter, as shown in Figure 4.38b.
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Figure 5.10. Convergence analysis of isentropic vortex test for polynomial degrees N =3; 4 when
(a) the blending limiter is active (b) no limiter is active.

5.9.2. Double Mach reflection

The description and significance of this test have been given in Section 4.11.2. The
simulation is run on a mesh of 600� 150 elements using degree N =4 polynomials up
to time t= 0.2. In Figure 5.11, the density plot generated using LWFR with MUSCL-
Hancock blending scheme is shown. In Figure 5.12, we compare the results of Trixi.jl
with the MUSCL-Hancock blended scheme zoomed near the primary triple point with
the same 600� 150 mesh resolution in Figure 5.12a,b. In Figure 5.12c, we show a
solution generated with Trixi.jl on a finer mesh of 1600�400 elements. The MUSCL-
Hancock (Figure 5.12b) captures more of the small scale structures present in the
reference solution (Figure 5.12c) than the first order blending scheme of Trixi.jl
(Figure 5.12a).
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Figure 5.11. Double Mach reflection problem, density plot of numerical solution at t= 0.2 using
polynomial degree N =4 on a 600� 150 mesh generated using Lax-Wendroff Flux Reconstruction
with MUSCL-Hancock blending scheme.

(a) Trixi.jl zoomed (b) LW-MH zoomed (c) Reference solution

Figure 5.12. Double Mach reflection problem, density plots of numerical solution at t= 0.2 using
polynomial degree N =4 on a 600� 150 mesh zoomed near the primary triple point.

5.9.3. 2-D Riemann problem
2-D Riemann problems consist of four constant states and have been studied theoreti-
cally and numerically for gas dynamics in [80]. We consider this problem in the square
domain [0;1]2 where each of the four quadrants has one constant initial state and every
jump in initial condition leads to an elementary planar wave, i.e., a shock, rarefaction
or contact discontinuity. There are only 19 such genuinely different configurations
possible [203, 112]. As studied in [203], a bounded region of subsonic flows is formed
by interaction of different planar waves leading to appearance of many complex struc-
tures depending on the elementary planar flow. We consider configuration 12 of [112]
consisting of 2 positive slip lines and two forward shocks, with initial condition

(�; u; v; p)=

8>>>>>><>>>>>>:
(0.5313; 0; 0; 0.4) if x� 0.5; y� 0.5
(1; 0.7276; 0; 1) if x< 0.5; y� 0.5
(0.8; 0; 0; 1) if x< 0.5; y < 0.5
(1; 0; 0.7276; 1) if x� 0.5; y < 0.5

The simulations are performed with transmissive boundary conditions on an enlarged
domain up to time t= 0.25. The density profiles obtained from the MUSCL-Hancock
blending scheme and Trixi.jl are shown in Figure 5.13. We see that both schemes
give similar resolutions in most regions. The MUSCL-Hancock blending scheme gives
better resolution of the small scale structures arising across the slip lines.
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A plot of the blending coefficients computed by the smoothness indicator is shown
in Figure 5.14 at an early time t=0.025 (5.14a) and the final time t=0.25 (5.14b). The
blending coefficient takes values close to �=1 in the vicinity of shocks while smaller
values are seen near the stationary contact discontinuities. Figure 5.15 shows the
percentage of cells in which the indicator function �> 0 as a function of time. From
these figures, we see that limiting is only performed in a small subset of the elements
in the grid and the indicator is able to track the sharp features and ignore the smooth
regions.

(a) Trixi.jl (b) LW-MH

Figure 5.13. 2-D Riemann problem, density plots of numerical solution at t=0.25 for degree N =4
on a 256� 256 mesh.

(a) Trixi.jl (b) LW-MH

Figure 5.14. 2-D Riemann problem, blending coefficient � for degree N =4 on a 256� 256 mesh.
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Figure 5.15. 2-D Riemann problem, percentage of elements where the blending coefficient �> 0
vs time t, for approximate solution with polynomial degree N =4 on a 256� 256 mesh.

5.9.4. Kelvin-Helmholtz instability

Fluid instabilities are essential for mixing processes and turbulence production, and
play a significant role in many astrophysical phenomena. They are crucial for accu-
rately modeling stripping of gas from satellite galaxies, as well as calculating the
expected levels of turbulence and entropy in the intracluster gas of galaxy clusters [168].
The Kelvin-Helmholtz instability is a common fluid instability that occurs across con-
tact discontinuities in the presence of a tangential shear flow. This instability leads to
the formation of vortices that grow in amplitude and can eventually lead to the onset
of turbulence. We adopt the initial conditions for this instability from [168] over the
domain [0; 1]2,

� (x; y) =

�
2; if 0.25< y< 0.75
1; otherwise

u (x; y) =

�
0.5; if 0.25< y < 0.75
¡0.5; otherwise;

v(x; y) = w0 sin(4�x)
�
exp
�
¡(y¡ 0.25)2

2�2

�
+ exp

�
¡(y¡ 0.75)2

2�2

��
p (x; y) = 2.5

with w0=0.1, �=0.05/ 2
p

and the adiabatic index 
=7/5 corresponding to diatomic
gases. The initial conditions consist of a single strongly excited mode in the y velocity
concentrated near the interfaces. The wavelength is chosen to be equal to half the
domain size so that the single mode dominates the linear growth of instability. This
instability leads to shearing and small scale, self-similar vortex structures. We run this
test using solution polynomial degree N =4 on a mesh of 5122 elements with periodic
boundary conditions. We compare the density profiles of Trixi.jl and our MUSCL-
Hancock blending scheme in Figure 5.16. The presence of more vortex structures with
the MUSCL-Hancock scheme suggests that the scheme has lesser dissipation errors and
is capable of capturing small scale features.

5.9 2-D Euler equations 109



(a) Trixi.jl (b) LW-MH

(c) Trixi.jl zoomed around top left (d) LW-MH zoomed around top left

Figure 5.16. Kelvin-Helmholtz instability, density plots of numerical solution at t = 0.4 using
polynomial degree N =4 with Rusanov flux on a 5122 element mesh.

5.9.5. Astrophysical jet

In this test, a hypersonic jet is injected into a uniform medium with a Mach number
of 2000 relative to the sound speed in the medium. Following [86, 206], the domain is
taken to be [0; 1]� [¡0.5; 0.5], the ambient gas in the interior has state ua defined in
primitive variables as

(�; u; v; p)a=(0.5; 0; 0; 0.4127)

and inflow state uj is defined in primitive variables as

(�; u; v; p)j=(5; 800; 0; 0.4127)

On the left boundary, we impose the boundary conditions

ub=

�
ua; if y 2 [¡0.05; 0.05]
uj ; otherwise

and outflow conditions on the right, top and bottom. The HLLC numerical flux was
used in the left most cells to distinguish between characteristics entering and exiting
the domain. To get better resolution of vortices, we used a smaller time step with
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CCFL= 0.5 in (4.30) and included ghost elements in time step computation to handle
the cold start. The high velocity makes the kinetic energy much higher than internal
energy. Thus, it is very likely for numerical solvers to give negative pressures. At the
same time, a Kelvin-Helmholtz instability arises before the bow shock. Thus, it is a
good test both for admissibility preservation and capturing small scale structures.
The simulation gives negative pressures if used without the proposed admissibility
preservation techniques. While the large scale structures are captured similarly by both
the schemes as seen in Figure 5.17, the LWFR with MH blending scheme shows more
small scales near the front of the jet.

(a) Trixi.jl (b) LW-MH

Figure 5.17. Mach 2000 astrophysical jet, density plot of numerical solution in log scales on
400� 400 mesh at time t= 0.001.

5.9.6. Sedov's blast case with periodic boundary conditions

Similar to Sedov's blast test in Section 5.7.1.3 this test from [151] on domain [¡1.5;
1.5]2 has energy concentrated at the origin. More precisely, for the initial condition,
we assume that the gas is at rest (u= v=0) with Gaussian distribution of density and
pressure

�(x; y)= �0+
1

4���
2 e
¡ r2

2��
2
; p(x; y)= p0+


 ¡ 1
4��p

2 e
¡ r2

2�p
2
; r2=x2+ y2 (5.30)

where ��= 0.25 and �p= 0.15. The ambient density and ambient pressure are set to
�0=1, p0=10¡5. There are two differences in this Sedov's test compared to the previous
one - the energy concentrated at the origin is lesser, and domain is assumed to be
periodic. When shocks collide at the periodic boundaries, the resulting interaction leads
to the formation of small scale structures. A reference solution on a 1282 element mesh
with polynomial degree N =4 is shown in Figure 5.18. In Figure 5.19, we compare the
density profiles of the numerical solutions of polynomial degree N = 4 on a mesh of
642 elements using Trixi.jl and the proposed MUSCL-Hancock blending scheme in
log scales. The solution on the coarse mesh generated by the proposed scheme is able
to resolve small scale structures better than the solution of Trixi.jl on the coarse
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mesh. This is most evidently seen by looking at the mushroom structures as some of
the mushroom structures in the MUSCL-Hancock scheme (Figure 5.19b) look very
similar to the reference solution (Figure 5.18b).

(a) t=2 (b) t= 20

Figure 5.18. Sedov's blast test with periodic domain, density plot of numerical solution on 128�128
mesh in log scales with degree N = 4 at (a) t= 2 and (b) t= 20 with polynomial degree N = 4
computed using Trixi.jl.

(a) Trixi.jl (b) LW-MH

Figure 5.19. Sedov's blast test with periodic domain, density plot of numerical solution on 64�64
mesh in log scales at t= 20 with degree N =4.

5.9.7. Detonation shock diffraction

This test [173] involves a planar detonation wave that interacts with a wedge-shaped
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corner and diffracts around it, resulting in a complicated wave pattern comprising
of transmitted and reflected shocks, as well as rarefaction waves. The computational
domain is 
= [0; 2]2 n ([0; 0.5]� [0; 1]) and following [90], the simulation is performed
by taking the initial condition to be a pure right-moving shock with Mach number of
100 initially located at x= 0.5 and travelling through a channel of resting gas. The
post shock states are computed by normal relations [4], so that the initial data is

� (x; y) =

�
5.9970; if x� 0.5
1; if x> 0.5

; u (x; y)=

�
98.5914; if x� 0.5
0; if x> 0.5

v(x; y) =0; p (x; y)=

�
11666.5; if x� 0.5
1; if x> 0.5

The left boundary is set as inflow and right boundary is set as outflow, all other
boundaries are solid walls. The numerical results at t= 0.01 with polynomial degree
N =4 on a Cartesian grid consisting of uniformly sized squares with �x=�y=1/200
are shown in Figure 5.20. The results look similar to [90]; the strong shock makes this
a tough test for the admissibility preservation and negative pressure values are obtained
if the proposed admissibility correction is not applied.

(a) Density (b) Mach number

Figure 5.20. Shock diffraction test, numerical solution at time t= 0.01 with polynomial degree
N =4.

5.9.8. Forward facing step

Forward facing step is a classical test case from [73, 197] where a uniform supersonic
flow passes through a channel with a forward facing step generating several phenomena
like a strong bow shock, shock reflections and a Kelvin-Helmholtz instability. It is a
good test for demonstrating a shock capturing scheme's capability of capturing small
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scale vortex structures while suppressing spurious oscillations arising from shocks. The
step is simulated by taking the domain to be 
=([0;3]� [0;1])n ([0.6;3]� [0;0.2]) and
the initial conditions are taken to be

(�; u; v; p)= (1.4; 3; 0; 1)

The initial conditions are taken to be constant over the whole domain 
. The left
boundary condition is taken as an inflow and the right one is an outflow, the rest are
solid walls. The corner (0.6; 0.2) of the step is the center of a rarefaction fan and is
thus a singular point leading to formation of a spurious boundary layer. The modern
treatment of this issue is to use a more refined mesh near the corner point, which is
what we do in Chapter 8. For now, we obtain the same outcome by forming 1-D meshes
in [0; 1]; [0; 3] with the same grid spacing �xmax away from the singularity and the
smaller grid spacing �xmin=

1

4
�xmax in [0.15;0.25]; [0.45; 0.75]. Then, the 2-D mesh is

formed by taking a tensor product of the two 1-D meshes with cells from [0.6; 3]� [0;
0.2] removed. We show the density profile of numerical solutions in Figure (5.22a, b, c)
for solution polynomial degrees N =2; 3; 4 with �xmax=1/160. The scheme captures
both the shock and the small scale vortices, with better resolution of shear structures
from the triple shock point near the top wall as the overall resolution is increased. The
corner point singularity causes an artificial boundary layer and Mach stem to occur
but these numerical artifacts decrease as we increase mesh resolution by increasing the
polynomial degree. Figure 5.21 shows the time evolution of the percentage of cells in the
grid where the blending coefficient �>0 and Figure 5.22d plots the blending coefficient
for degree N =4 solution at the final time; these figures show that the blending limiter
is activated in a small fraction of the cells and only in the vicinity of shocks.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

1

2

3

4

%
E

le
m

en
ts

w
it

h
α
>

0

Figure 5.21. Forward facing step test case, percentage of elements where the blending coefficient
� is non-zero versus time t for approximate solution with polynomial degree N =4 on a mesh with
�xmax=1/160.
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(a) N =2

(b) N =3

(c) N =4

(d) Blending coefficient � for N =4

Figure 5.22. Forward facing step, density plots of numerical solution at time t=3 with solution
polynomial degrees N =2;3;4 (a, b, c) and blending coefficient plot for degree N =4 (d). The meshes
are formed by taking grid spacing �xmax=�ymax away from the corner and smaller grid spacing
�xmin=�ymin=

1

4
�xmax near the corner.
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5.10. Summary and conclusions

An admissibility preserving subcell-based blending limiter for the high order Lax-
Wendroff Flux Reconstruction (LWFR) scheme has been constructed by extending the
LWFR scheme proposed in Chapter 4 using the blending limiter of [90]. The scheme
uses a smoothness indicator to blend two single-stage solvers on the FR grid, one based
on the high order LWFR method and the other based on a finite volume update on
the subcells. At the FR element interfaces, a blended numerical flux is constructed
using the Lax-Wendroff time averaged flux and lower order numerical flux. The same
blended numerical flux is used by both schemes at the element interfaces to maintain
conservation. The crucial observation used for obtaining admissibility preservation
was that admissibility preservation in means is a consequence of admissibility of the
lower order updates. A simple and efficient procedure to obtain admissibility preser-
vation in means was thus proposed, where lower-order updates are made admissible
by appropriately constructing the blending numerical flux within the face loop. This
approach eliminates the need for additional element or interface loops, minimizing
storage requirements. The user only needs to provide the admissibility constraints
fPk; k=1; : : : ; Kg of the conservative variables and whose positivity implies that the
solution is in the admissible set Uad, making the correction problem-independent. Once
admissibility preservation in means is obtained, we use the scaling limiter of [206] to
enforce admissibility of the polynomial values. To enhance accuracy, we modified the
blending scheme of [90] to use Gauss-Legendre solution points and used the second-
order MUSCL-Hancock scheme to compute the lower-order residual. We extended the
slope restriction criterion of [26] for admissibility of the MUSCL-Hancock scheme to
non-cell-centered grids that arise in the blending scheme to maintain the conservation
property. We also proposed a problem-independent procedure to enforce the slope
restriction. The scheme is robust and the higher resolution of MUSCL-Hancock is
more superior in capturing small scale structures, as was demonstrated by numerical
experiments on compressible Euler equations.
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Chapter 6

Generalized admissibility preservation and
source terms

6.1. Introduction

In Chapter 5, we developed an admissibility preserving subcell based blending scheme
for LWFR by exploiting the subcell structure to appropriately construct the blended
numerical flux . The subcell based limiter was initially introduced to control oscillations
and then also used to obtain admissibility preservation. In this chapter, we will show
that the role of subcell based blending in admissibility preservation was primarily to
derive and motivate the construction of the blended numerical flux. That is, we now
propose a generalized procedure of limiting the time average flux to obtain provable
admissibility preservation. This procedure can be combined with any choice of lim-
iter to control oscillations and get a robust, admissibility preserving scheme. In this
chapter, we use it with the TVB limiter to verify admissibility preservation. The idea
of the generalized procedure is to perform a cell average decomposition like in [205]
for LWFR and perform flux limiting to enforce admissibility in means. The LWFR
scheme is extended to apply to conservation laws with source terms by performing time
averaging of source terms. The extension is made provably admissibility preserving
by limiting the time average source terms. To numerically validate our claims, we test
LWFR on the Ten Moment equations, which are derived by Levermore et al. [118] by
taking a Gaussian closure of the kinetic model.

The rest of the chapter is organized as follows. Section 6.2 describes the LWFR
scheme for conservation laws with source terms, and notions of admissibility preser-
vation. Section 6.3 describes the additional limiting required in LW scheme for admissi-
bility preservation, i.e., for the time averaged flux (Section 6.3.1) and time averaged
sources (Section 6.3.2). Section 6.4 shows the numerical results for the Ten Moment
equations model and a summary of the the chapter is given in Section 6.5.

6.2. LWFR for source terms

Consider a conservation law of the form

ut+ fx= s (6.1)

where u2Rp is the vector of conserved quantities, f = f(u) is the corresponding flux,
s= s(u; t; x) is the source term, together with some initial and boundary conditions.
As in the case of s=0 (3.1), the solution that is physically correct is assumed to belong
to an admissibility set Uad (5.1).
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Following Chapter 4, the LWFR scheme for source terms is derived from a Taylor's
expansion in time at t= tn+1 around t= tn

un+1=un+
X
m=1

N+1
�tm

m!
@t
mun+O(�tN+2)

Since the spatial error is expected to be of O(�xN+1), we retain terms up to O(�tN+1)
in the Taylor expansion, so that the overall formal accuracy is of order N +1 in both
space and time. Using the conservation law with source terms, @tu=¡@xf +s (6.1),
we re-write time derivatives of the solution in terms of spatial derivatives of the flux
and source terms

@t
mu=¡(@tm¡1 f)x+ @t

m¡1 s; m=1; 2; : : :

so that

un+1 = un¡
X
m=1

N+1
�tm

m!
(@t

m¡1 f)x+
X
m=1

N+1
�tm

m!
@t
m¡1 s+O(�tN+2)

= un¡�t @F
@x

(un)+�tS(un; tn)+O(�tN+2)

(6.2)

where

F =
X
m=0

N
�tm

(m+1)!
@t
mf = f +

�t
2
@tf + : : :+

�tN

(N +1)!
@t
Nf (6.3)

S =
X
m=0

N
�tm

(m+1)!
@t
m s= s+

�t
2
@t s+ : : :+

�tN

(N +1)!
@t
N s (6.4)

Note that F (un); S(un; tn) are approximations to the time average flux and source
term in the interval [tn; tn+1] since they can be written as

F (un) =
1
�t

Z
tn

tn+1
�
f(un)+ : : :+

(t¡ tn)N
N !

@t
Nf(un)

�
dt (6.5)

S(un; tn) =
1
�t

Z
tn

tn+1
�
s(un; tn)+ : : :+

(t¡ tn)N
N !

@t
N s(un; tn)

�
dt (6.6)

where the quantity inside the square brackets is the truncated Taylor expansion of the
flux f or source s in time. Following equation (6.2) we need to specify the construction
of the time averaged flux (6.3) and the time averaged source terms (6.4). The first step
of approximating (6.2) is the predictor step where a local degree N approximation F �

of the time averaged flux is computed by the approximate Lax-Wendroff procedure
(Section 4.2.4). Then, as in the standard RKFR scheme, we perform the Flux Recon-
struction procedure on F � to construct a local degree N +1 and globally continuous
flux approximation Fh(�). The time average source S will also be approximated locally
as a degree N polynomial using the approximate Lax-Wendroff procedure and denoted
with a single notation S�(�) since it needs no correction. The scheme for local approxi-

118 Generalized admissibility preservation and source terms



mation is discussed in Section 6.2.1. After computing Fh;S�, truncating equation (6.2),
the solution at the nodes is updated by a collocation scheme as follows

ue;p
n+1=ue;p

n ¡ �t
�xe

dFh
d�

(�p)+�tS�(�p); 0� p�N (6.7)

This is the single step Lax-Wendroff update scheme for any order of accuracy.

6.2.1. Approximate Lax-Wendroff procedure for degree N =2

The approximations of temporal derivatives of s are made in a similar fashion as those
of f in [208, 18] (Section 4.2.4). For example, to obtain second order accuracy, @t s
can be approximated as

@t s(u;x; t) �
s(un+�tut

n;x; tn+1)¡ s(un¡�tut
n;x; tn¡1)

2�t

where ut=¡@x f + s(u; x; t). Denoting g(k) as an approximation for �tk @tk g, we
explain the local flux and source term approximation procedure for degree N =2

F=f+
1
2
f(1)+

1
6
f(2); S=s+

1
2
s(1)+

1
6
s(2)

where

u(1) = ¡ �t
�xe

Df+�t s

f(1); s(1) =
1
2
[f(u+u(1))¡ f(u¡u(1))];

1
2
[s(u+u(1))¡ s(u¡u(1))]

u(2) = ¡ �t
�xe

Df(1)+�t s(1)

f(2) = f

�
u+u(1)+

1
2

u(2)
�
¡ 2 f(u)+ f

�
u¡u(1)+

1
2

u(2)
�

s(2) = s

�
u+u(1)+

1
2

u(2)
�
¡ 2 s(u)+ s

�
u¡u(1)+

1
2

u(2)
�

The local approximation of the flux F for all degrees and then its FR correction using
the time numerical flux Fe+ 1

2

is as in Chapter 4.

6.2.2. Admissibility preservation

As in Chapter 5, the idea is to obtain admissibility preservation in means (Defini-
tion 5.2) and then use the scaling limiter of [205] (Appendix F)to obtain an admissibility
preserving LWFR scheme (Definition 5.1). The following conservation property of
the LWFR scheme will be crucial in obtaining admissibility preservation in means

u�e
n+1=u�e

n¡ �t
�xe

(Fe+ 1

2

¡Fe¡ 1

2

)+�tS�e (6.8)
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where u�en is the cell average of solution, S�e :=
P

p=0

N
wp Se

�(�p) is the cell average of
the source term. As in (4.5), the conservation property (6.8) is obtained by multi-
plying (6.7) by the quadrature weights associated with the solution points and sum
over all the points in the eth element. In the subsequent sections, we discuss limiting
of time average sources and fluxes in order to obtain admissibility in means.

6.3. Limiting time averages

6.3.1. Limiting time average flux

In this section, we describe the approach to obtain admissibility preservation in means
property (5.2) for the LWFR update (6.7) in the case where source term s in (6.1) is
zero. In Chapter 5, a subcell based blending limiter was used which helped in control-
ling spurious oscillations but also motivated construction of the blended numerical flux
that gave us admissibility preservation in means. The admissibility preserving scheme
used in Chapter 5 was a combination of the subcell based blending scheme and a flux
limiter. The approach we now describe generalizes Chapter 5 in the sense that we
can use the blended numerical flux to obtain admissibility preservation in means even
without using the subcell based blending limiter, allowing us to use a different limiter
for controlling oscillations. The procedure begins by following the work of Zhang and
Shu [205] to define fictitious finite volume updates

u
�

e;0
n+1 = ue;0

n ¡ �t
w0�xe

[f1

2

e¡F
e¡ 1

2

LW]

u
�

e;p
n+1 = ue;p

n ¡ �t
wp�xe

[f
p+

1

2

e ¡ f
p¡ 1

2

e ]; 1� p�N ¡ 1

u
�

e;N
n+1 = ue;N

n ¡ �t
wN�xe

[F
e+

1

2

LW¡ f
N¡ 1

2

e ]

(6.9)

where f
p+

1

2

e = f(ue;p
n ; ue;p+1

n ) is an admissibility preserving finite volume numerical

flux (Definition 3.1). The fictitious updates of (6.9) look similar to a lower scheme
on subcells (5.8) and can indeed be seen as finite volume updates on subcells. The
argument for admissibility preservation in means of the scheme will in fact be obtained
by viewing u

�

e;p
n+1 for p=0; N as evolutions on subcells. However, u

�

e;p
n+1 for p=1; : : : ;

N ¡ 1 are never explicitly computed. The relation of (6.9) to element means of the
scheme is the following

u�e
n+1=

X
p=0

N

wpu
�

e;p
n+1 (6.10)

Thus, if we can ensure that u
�

e;p
n+12Uad for all p, the scheme will be admissibility pre-

serving in means (5.2). We do have u
�

e;p
n+12Uad for 1� p�N ¡1 under appropriate CFL

conditions because the finite volume fluxes are admissibility preserving (3.14). In order
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to ensure that the updates u
�

e;0
n+1;u

�

e;N
n+1 are also admissible, the flux limiting procedure

of Chapter 5 is followed so that the high order numerical fluxes F
e� 1

2

LW are replaced by

blended numerical fluxes Fe� 1

2

. The procedure is explained here for completeness. We

define an admissibility preserving lower order flux at the interface e+ 1

2

fe+ 1

2

= f(ue+1;0
n ;ue;N

n )

Note that, for an RKFR scheme using Gauss-Legendre-Lobatto (GLL) solution points,
the definition of u

�

e;N
n+1 will use fe+ 1

2

in place of F
e+

1

2

LW and thus admissibility preserving

in means property will always be present. That is the argument of [205] and here we
demonstrate that the same argument can be applied to LWFR schemes by limiting
F
e+

1

2

LW. We will explain the procedure for limiting F
e+

1

2

LW to obtain Fe+ 1

2

; it will be similar

in the case of Fe¡ 1

2

. Note that we want Fe+ 1

2

to be such that the following are admissible

u
�

0
n+1 = ue+1;0

n ¡ �t
w0�xe+1

(f1

2

e+1¡Fe+ 1

2

)

u
�

N
n+1 = ue;N

n ¡ �t
wN�xe

(Fe+ 1

2

¡ f
N¡ 1

2

e )
(6.11)

We will exploit the admissibility preserving property of the finite volume fluxes to get

u
�

0
low;n+1 = ue+1;0

n ¡ �t
w0�xe+1

(f1

2

e+1¡ fe+ 1

2

)2Uad

u
�

N
low;n+1 = ue;N

n ¡ �t
wN�xe

(fe+ 1

2

¡ f
N¡ 1

2

e )2Uad
(6.12)

Thus, to enforce admissibility preservation in means, the flux F
e+

1

2

LW can be limited by

Algorithm 5.1 by using the initial guess Fe+ 1

2

 F
e+

1

2

LW and the u
�

i
low;n+1;u

�

i
n+1 defined

for i=0; N in (6.11, 6.12).

6.3.2. Limiting time average sources

After the flux limiting performed in Section 6.3.1, we will have an admissibility pre-
serving in means scheme (5.2) if the source term average S�e in (6.8) is zero. In order
to get an admissibility preserving scheme in the presence of source terms, we will make
a splitting of the cell average update (6.8), which is similar to that of [124]

u�e
n+1=

1
2

�
u�e
n¡ 2�t

�xe
(Fe+ 1

2

¡Fe¡ 1

2

)

�
+
1
2
(u�e

n+2�tSe
LW)=:u�e

F +u�e
SLW

(6.13)

where SeLW denotes the time average source term in element e computed with the
approximate Lax-Wendroff procedure in Section 6.2.1. With the flux limiting per-

6.3 Limiting time averages 121



formed in Section 6.3.1, we can ensure that cell average u�eF 2Uad if half the standard
CFL is assumed6.1. In order to enforce u�eS 2Uad, SeLW will be limited as follows. We
will use the admissibility of the first order update using the source term

u�e
low;n+1 :=u�e

n+2�t s�e2Uad; s�e=
X
p=0

N

wp s(ue;p;xe;p; t
n) (6.14)

which will be true under some problem dependent time step restrictions (e.g., Theorem
3.3.1 of [125]). Then, we will find a � 2 [0; 1] so that for S =S� := � s+ (1¡ �)SLW,
we will have u�eS 2Uad. The � can be found by iterating over admissibility constraints
Pk (5.1). For the constraint Pk we can solve an optimization problem as in (5.23) to
find the largest � satisfying

Pk(u�e
n+2�tS�)=Pk(�u�e

SLW
+(1¡ �)u�elow;n+1)� � (6.15)

where � is a tolerance, taken to be 1

10 Pk(u�e
low;n+1) [151] . We solve (6.15) using a general

iterative solver that is independent of choice of Pk (Appendix F). If Pk is a concave
function of the conserved variables, as in (5.24), we can use the simpler but possibly
sub-optimal approach of defining

�=min

 
min
p=0;N

���������� �p¡Pk(u�elow;n+1)
Pk(u�e

SLW
)¡Pk(u�e

low;n+1)

����������; 1
!

(6.16)

Thus, a procedure analogous to Algorithm 5.1 is used for limiting source terms, which
we write here for completeness.

Algorithm 6.1

Source limiter

Se Se
LW B Initial guess

for k=1:K do
�0 1

10 Pk(u�e
low;n+1)

Find � by solving (6.15) or by using (6.16) if Pk is concave
Se � se+(1¡ �)Se
u�e
S u�e

n+2�tSe
end for

After replacing SLW by S obtained from Algorithm 6.1 in (6.13), we will have
u�S2Uad and since F has been corrected to ensure u�eF 2Uad following Section 6.3.1, we
will also have u�e

n+12Uad. Thus, we have an admissibility preserving in means LWFR
scheme (5.2) even in the presence of source terms. Then, the scaling limiter of [205]
(Appendix F) will be used to obtain an admissibility preserving scheme.

6.1. In the experiments we conducted, the CFL restriction used in Chapter 5 preserved admissibility.
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6.4. Numerical results

The numerical tests for admissibility preservation with 2-D Euler's equations in
Chapter 5 were repeated with the generalized admissbility enforcing procedure of Sec-
tion 6.3.1 and it was seen that admissibility of numerical solution was preserved in all
test cases. For further numerical verification of admissibility preserving flux limiter (Sec-
tion 6.3.1) and for validation of admissibility of LWFR with source terms (Section 6.3.2),
we test our scheme with the Ten Moment equations [118] which we describe here.
Here, the energy tensor is defined by the ideal equation of state E =

1

2
p+

1

2
� v 


v where � is the density, v is the velocity vector, p is the symmetric pressure tensor.
Thus, we can define the 2-D conservation law with source terms

@tu+ @x1 f1+ @x2 f2=s
x1(u)+ sx2(u)

where u=(�; �v ;E)= (�; � v1; � v2; E11; E12; E22) and

f1=

266666666666666664
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1
2
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377777777777777775
; f2=
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(6.17)

The source terms are given by
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where W (x; y; t) is a given function, which models electron quiver energy in the
laser [27]. These equations are relevant in many applications, especially related to
plasma flows in cases where the local thermodynamic equilibrium used to close the
Euler equations of compressible flows is not valid, and anisotropic nature of the pres-
sure needs to be accounted for. More details about the significance of these models
can be found in [25, 27] and further references in [124]. The admissibility set is given by

Uad= fu2R6j�(u)> 0; xTp(u)x> 0; x2R2 n f0gg

which contains the states u with positive density and positive definite pressure tensor.
The positive definiteness of p is equivalent to that Tr(p) = p11+ p22> 0 and det p=
p11p22¡ p122 >0. Following the notation of (5.1), the K=3 admissibility constraints P1;
P2;P3 are density, Trace(p), and det(p). However, although density and trace functions
are concave functions of the conserved variables, det (p) is not so.

6.4 Numerical results 123



The hyperbolicity of the system without source terms, along with its eigenvalues
are presented in Lemma 2.0.2 of [125]. The conditions for admissibiltiy preservation
of the forward Euler method for the source terms, which are the basis for the source
term limiting described in Section 6.3.2, are Lemma 5.1 of [124]. For completeness,
they are stated here.

Lemma 6.1. (Lemma 2.0.2 of [ 125]).
The system (6.17) without source terms is hyperbolic for u2Uad and admits the eigen-
values

v �n; v �n� 3 (p �n) �n
�

r
; v �n� (p �n) �n

�

r
along the unitary vector n (The definition of eigenvalues along a direction n is in the
sense of Definition 2.1) where �;v ; p denote the density, velocity and pressure tensor
of (6.17) respectively. The eigenvalue v �n has a multiplicity of two while the rest have

a multiplicity of one. The eigenvalues v �n;v �n� (p �n) �n
�

q
are associated to linearly

degenerate fields (2.5). The eigenvalues v �n� 3 (p �n) �n
�

q
are associated to a genuinely

nonlinear field (2.4).

Theorem 6.2. (Lemma 5.1 of [ 124]).
Define source term updates in the the two coordinate directions as

ue;p
sx1;n+1=ue;p

n +2�t se;p
x1 ; se;p

x1 = sx1(ue;p
n ;xe;p; tn)

ue;p
sx2;n+1=ue;p

n +2�t se;p
x2 ; se;p

x2 = sx2(ue;p
n ;xe;p; t

n)

for sx1;sx2 defined in (6.18). Then, for se;p=se;p
x1 +se;p

x2 , the source term update in 2-
D can be written as

ue;p
s;n+1=ue;p

n +�t se;p
n =

1
2
(ue;p

sx1;n+1+ue;p
sx2;n+1) (6.19)

Assume ue;pn 2 Uad. Then, we will have ue;p
sx1;n+1 2 Uad if the the following time step

conditions are satisfied

�t� 1
2

(p11
n )e;p

(�n)e;p ((@xWx
n)e;p)2

s
; �t� 1

2
(p11

n )e;p (p22
n )e;p¡ ((p12n )e;p)2

(�n)e;p (p22
n )e;p ((@xWx

n)e;p)2

s

Similarly, ue;p
sx2;n+12Uad if the following time step conditions are satisfied.

�t� 1
2

(p22
n )e;p

(�n)e;p ((@yWy
n)e;p)2

s
; �t� 1

2
(p11

n )e;p (p22
n )e;p¡ ((p12n )e;p)2

(�n)e;p (p11
n )e;p ((@yWy

n)e;p)2

s

By (6.19), these time step restrictions will imply ue;p
s;n+12Uad.

All distinct numerical experiments from [125, 124, 126] were performed and observed
to validate the accuracy and robustness of the proposed scheme, but only some are shown
here. The experiments were performed both with the TVB limiter used in Chapter 4
and the subcell-based blending scheme developed in Chapter 5. As seen in Chapter 5,
the subcell based limiter preserves small scale structures well compared to the TVB
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limiter. The use of TVB limiter is only made in this chapter to numerically val-
idate that the flux limiting procedure of Section 6.3.1 preserves admissibility. The
results shown are produced with TVB limiter unless specified otherwise.

The developments made in this chapter have been contributed to the package
Tenkai.jl [17] developed in Chapter 5 and the setup files used for generating the
results in this chapter are available in [8].

6.4.1. Convergence test
This is a smooth convergence test from [30] and requires no limiter. The domain is
taken to be 
=[¡0.5;0.5] and the potential for source terms (6.18) isW = sin (2� (x¡
t)). With periodic boundary conditions, the exact solution is given by

�(x; t)= 2+ sin (2� (x¡ t)); v1(x; t)= 1; v2(x; t)= 0

p11= 1.5+
1
8
[cos (4� (x¡ t))¡ 8 sin (2� (x¡ t))]; p12(x; t)= 0; p22(x; t)= 1

The solutions are computed at t= 0.5 and the convergence results for variable � and
p11 are shown in Figure 6.1 where optimal convergence rates are seen.
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Figure 6.1. Error convergence analysis of a smooth test with source terms for (a) �, (b) p11 variable

6.4.2. Riemann problems
Here, we test the scheme on Riemann problems in the absence of source terms with
the TVB limiter. The domain is 
= [¡0.5; 0.5]. The first problem is Sod's test

(�; v1; v2; p11; p12; p22)=

�
(1; 0; 0; 2; 0.05; 0.6); x< 0
(0.125; 0; 0; 0.2; 0.1; 0.2); x> 0

The second is a problem from [125] with two rarefaction waves containing both low-
density and low-pressure, leading to a near vacuum solution

(�; v1; v2; p11; p12; p22)=

�
(1;¡5; 0; 2; 0; 2); x< 0
(1; 5; 0; 2; 0; 2); x> 0
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The scheme is able to maintain admissibility in the near vacuum test and the results
for both Riemann problems are shown in Figure 6.2 where convergence is seen under
grid refinement.
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Figure 6.2. Density plots of numerical solutions with polynomial degree N = 2 for (a) Sod's
problem, (b) Two rarefaction (near vacuum) problem

6.4.3. Shu-Osher test
This is a modified version of the standard Shu-Osher test (Section 4.8.4), taken
from [126]. The solution is initialized in domain [¡5;5] in terms of primitive variables as

(�; v1; v2; p11; p12; p22)

=

�
(3.857143; 2.699369; 0; 10.33333; 0; 10.33333); if x�¡4
(1+ 0.2 sin (5x); 0; 0; 1; 0; 1); if x>¡4

The simulation is performed with polynomial degree N = 4 using 200 elements and
run till time t= 1.8 and the results with both blending and TVB limiter are shown in
Figure 6.3 where, as expected, the blending limiter is giving a much better resolution
of the shock and high-frequency wave.
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Figure 6.3. Numerical solution for Shu-Osher problem with polynomial degree N =4 using TVB
and blending limiter and we show (a) Density, (b) v1 profiles. The density plot has an inset plot near
the shock which compares the number of cells smeared across the shock by blending and TVB limiter.
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6.4.4. Two rarefactions with source terms
The Riemann problem is given by

(�; v1; v2; p11; p12; p22)=

�
(1;¡4; 0; 9; 7; 9); x< 0
(1; 4; 0; 9; 7; 9); x> 0

with source terms as in (6.18) with W (x; y; t) = 25 exp(¡200 (x¡ 2)2). We show the
numerical solutions with degree N =4 and 500 elements at t= 0.1 in Figure 6.4 with
and without the source terms using the blending limiter. The solution with source
terms has a near vacuum state at the centre. Thus, this is a test where low density
is caused by the presence of source terms verifying that our scheme is able to capture
admissibility even in the presence of source terms. The positivity limiter had to be
used to maintain admissibility of the solution.
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Figure 6.4. Two rarefactions with source terms using polynomial degree N =4 on a mesh of 500
element at time t= 0.1, where we show (a) Density Profile, (b) P12

6.4.5. Two dimensional near vacuum test
This is a near vacuum test taken from [125] which is simulated using the TVB lim-
iter, and is thus another verification of the admissibility preserving framework of
Section 6.3.1. The domain is 
 = [¡1; 1]2 with outflow boundary conditions. The
initial conditions are

�=1; p11= p22=1; p12=0; v1=8 fs(r) cos �; v2=8 fs(r) sin �

where r= x2+ y2
p

, �= arctan (y/x)2 [¡�; �] and s= 0.06�x for mesh size �x=�y
of the uniform mesh. The fs(r) smoothens the velocity profile near the origin as � is
not defined there

fs(r)=

(
¡2
¡ r
s

�
3+3

¡ r
s

�
2; if r < s

1; otherwise

The numerical solution computed using polynomial degree N =2 and 100 elements is
shown at the time t=0.02. The results are shown in Figure 6.5 and are similar to those
seen in the literature. Since this is a near vacuum problem, the numerical method is
not able to maintain admissibility of solution without the positivity limiter.
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Figure 6.5. 2-D near vacuum test. Density plot of numerical solution with degree N =2 on a 1002

element mesh (a) Pseudocolor plot (b) Solution cut along the line y=0.

6.4.6. Uniform plasma state with Gaussian source

The initial condition is a uniform plasma state characterized by

�= 0.1; v1= v2=0; p11= p22=9; p12=7

in the domain 
 = [0; 4]2 with outflow boundary conditions and source terms with
potential

W (x; y; t)= 25 exp (¡200 ((x¡ 2)2+(y¡ 2)2))

Since W depends on both x and y variable, the uniform state will be affected an-
isotropically. The simulation is run till t= 0.1 and the density profile is shown in
Figure 6.6 with degree N = 2 on a 200 � 200 mesh using the blending limiter. In
Figure 6.6, we show the line plot across the diagonal.
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Figure 6.6. Uniform plasma state with Gaussian source (a) Density pseudocolour plot (b) Line
plot across x+ y=4.
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6.4.7. Realistic simulation with inverse bremsstrahlung
Consider the domain 
 = [0; 100]2 with outflow boundary conditions. The uniform
initial condition is taken to be

�= 0.109885; v1= v2=0; p11= p22=1; p12=0

with the electron quiver energy W (x; y; t) = exp (¡0.01 ((x¡ 50)2+ (y ¡ 50)2)). The
source term is taken from [27], and only has the x component, i.e., sy(u) = 0, even
though W continues to depend on x and y. An additional source corresponding to
energy components sE= (0; 0; 0; �T �W ; 0; 0) is also added where �T is an absorption
coefficient. Thus, the source terms are s= sx+ sE. The simulation is run till t= 0.5
on a grid of 100 cells. The blending limiter from Chapter 5 was used in this test as it
captured the smooth extrema better. The density plot with a cut at y=4 is shown in
Figure 6.7.
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Figure 6.7. Realistic simulation. Density profile computed with degree N = 2 on 1002 element
mesh. (a) Pseudocolor color plot (b) Cut at y=4 comparing different absorption coefficients �T .

6.5. Summary and Conclusions

A generalized framework was developed for the LWFR scheme. The framework can
be seen as an extension of [205] to LWFR. It is a generalization of Chapter 5 as it
can be used in combination with any limiter for controlling spurious oscillations. As a
demonstration of this, results with TVB limiter that is made admissibility preserving
were presented, though the best accuracy is obtained with blending limiter. The LWFR
scheme was extended to be applicable to problems with source terms while maintaining
high order accuracy. Provable admissibility preservation in the presence of source terms
was also obtained by limiting the time average sources. The claims were numerically
verified on the Ten Moment problem where the scheme showed high order accuracy
and robustness.
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Chapter 7
Multi-derivative Runge-Kutta

7.1. Introduction
Lax-Wendroff schemes discussed in earlier chapters perform a Taylor's expansion in
time to the order of the desired accuracy and compute the temporal derivatives locally.
Multiderivative Runge-Kutta (MDRK) schemes also make use of temporal derivatives
but they combine them with multiple stages to obtain the desired order of accuracy.
As MDRK schemes use both temporal derivatives and multiple stages, they are a
generalization of LW and standard multistage RK methods [159]. MDRK methods
typically require fewer temporal derivatives in contrast to the Lax-Wendroff schemes
and fewer stages in contrast to the standard RK methods, which is what makes them
promising. In this chapter, we propose a multiderivative Runge-Kutta scheme in a Flux
Reconstruction framework to solve hyperbolic conservation laws (3.1). The idea is to
cast the fourth order multi-derivative Runge-Kutta scheme of [119] in the form of

u� = un¡ �t
2
@xF (7.1)

un+1 = un¡�t @xF �

where

@xF = @xF (un)�
1

�t/2
@x

Z
tn

tn+1/2

f dt; @xF �= @xF �(un;u�)�
1
�t

@x

Z
tn

tn+1

f dt

The method is two-stage; in the first stage, F is locally approximated and then Flux
Reconstruction (FR) (4.8) is used to construct a globally continuous approximation
of F which is used to perform evolution to u� (7:1); and the same procedure is then
performed using F � for evolution to un+1. The developments of Chapters 4, 5 are
applied to each stage of MDRK. In particular, the numerical flux has been constructed
with D2 dissipation (4.11) and EA scheme (Section 4.3.2) to enhance accuracy and
stability. Admissibility preserving blending limiter performing MUSCL-Hancock on
subcells is also developed showing good accuracy like in Chapter 5. The scheme is
validated with a modern test suite for high order methods [132].

The rest of the chapter is organized as follows. The MDRK scheme in FR framework
is introduced in Section 7.2. In particular, Section 7.2.3 discusses the approximate Lax-
Wendroff procedure applied to MDRK, Sections 7.2.4 discuss the D2 dissipation for
computing the dissipative part of the numerical flux to enhance Fourier CFL stability
limit and Section 7.2.6 discusses the EA scheme for computing the central part of
numerical flux to enhance stability. The Fourier stability analysis is performed in
Section 7.3 to demonstrate the improved stability of D2 dissipation. In Section 7.4,
we show how the admissibility preserving blending limiter of Chapter 5 applies to the
MDRK scheme. The numerical results validating the order of accuracy and capability
of the blending scheme are shown in Section 7.5 and a summary of the new MDRK
scheme is presented in Section 7.6.

131



7.2. Multi-derivative Runge-Kutta FR scheme

Multiderivative Runge-Kutta [130] methods were initially developed to solve systems
of ODE like

du
dt

=L(u) (7.2)

that use temporal derivatives of L. They were first used for temporal discretization of
hyperbolic conservation laws in [159] by using Weighted Essentially Non-Oscillatary
(WENO) [163] and Discontinuous Galerkin [49] methods for spatial discretization.

In this work, we use the two stage fourth order multiderivative Runge-Kutta method
from [119]. For the system of ODE (7.2), the MDRK scheme of [119] to evolve from
tn to tn+1 is given by

u� = un+
1
2
�tL(un)+

�t2

8
dL
dt
(un)

un+1 = un+�tL(un)+
�t2

6

�
dL
dt
(un)+ 2

dL
dt
(u�)

�
In order to solve the 1-D conservation law (3.1) using the above scheme, we formally
set L=¡f(u)x to get the following two stage procedure

u� = un¡ �t
2
@xF (7.3)

un+1 = un¡�t @xF � (7.4)

where

F := f(un)+
1
4
�t

@
@ t

f(un)

F � := f(un)+
1
6
�t

�
@
@ t

f(un)+ 2
@
@ t

f(u�)

� (7.5)

The formal order of accuracy of the scheme (Appendix I) is obtained from

@xF
�=

1
�t

@x

Z
tn

tn+1

f +O(�t4)

The idea is to use (7.2 7.3) to obtain solution update at the nodes written as a collo-
cation scheme

ue;p
� = ue;p

n ¡ �t
2�xe

dFh
d�

(�p)

ue;p
n+1 = ue;p

n ¡ �t
�xe

dFh�

d�
(�p)

; 0� p�N (7.6)

where we take N = 3 to get fourth order accuracy in both space and time. As was
the case for Chapter 4, the major work is in the construction of the time average flux
approximations Fh;Fh� which is explained in subsequent sections.
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7.2.1. Conservation property

The computation of correct weak solutions for non-linear conservation laws in the
presence of discontinuous solutions requires the use of conservative numerical schemes.
In order to see the conservation property of (7.6), multiply each equation by the
quadrature weights associated with the solution points and sum over all the points in
the eth element,

X
p=0

N

wpue;p
� =

X
p=0

N

wpue;p
n ¡ �t

2�xe

X
p=0

N

wp
@Fh
@�

(�p)

X
p=0

N

wpue;p
n+1 =

X
p=0

N

wpue;p
n ¡ �t

�xe

X
p=0

N

wp
@Fh

�

@�
(�p)

(7.7)

The correction functions are of degree N +1 and thus the fluxes Fh;Fh� are polynomials
of degree �N + 1. If the quadrature is exact for polynomials of degree at least N ,
which is true for both GLL and GL points, then the quadrature is exact for the flux
derivative term and we can write it as an integral, which leads toZ


e

uh
� dx =

Z

e

uh
ndx¡ �t

2
[Fe+ 1

2

¡Fe¡ 1

2

]Z

e

uh
n+1 dx =

Z

e

uh
ndx¡�t [F

e+
1

2

� ¡F
e¡ 1

2

� ]
(7.8)

This shows that the total mass inside the cell changes only due to the boundary fluxes
and the scheme is hence conservative. The conservation property is crucial in the proof
of admissibility preservation studied in Section 5.5.

7.2.2. Reconstruction of the time average flux

To complete the description of the MDRK method (7.6), we must explain the method
for the computation of the time average fluxes Fh;Fh� when evolving from tn to tn+1.
In the first stage (7.2), we compute Fh which is then used to evolve to u�. In the
second stage (7.3), un; u� are used to compute Fh� which is used for evolution to
un+1. The procedure for both Fh;Fh� is the same, and is in fact the same as Steps 1-
4 in Section 4.2.2. The procedure is not fully described but for readability, we briefly
mention that the steps are the following.

1. Approximate Lax-Wendroff procedure (Section 4.2.4) to approximate time
average fluxes Fh;Fh� at all solution points.

2. Use Lagrange interpolation to construct discontinuous time average flux approx-
imations Fh�;Fh�� (4.7).

3. Use FR correction functions gL; gR (3.18) to construct to continuous time average
fluxes Fh;Fh� (4.8).

4. Plug continuous fluxes Fh;Fh� into (7.6) to get an LWFR scheme using matrix
vector operations (4.9).
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7.2.3. Approximate Lax-Wendroff procedure
The time average fluxes Fp;Fp� must be computed using (7.5), which involves temporal
derivatives of the flux. The approximate Lax-Wendroff is used due to its advantages
discussed in Section 4.2.4. To present this idea in a concise and efficient form, we recall
the notation

u(1)=�t @tu; f (1)=�t @tf

The time derivatives of the solution are computed using the PDE

u(1)=¡�t @xf

The approximate Lax-Wendroff procedure is applied in each element and so for sim-
plicity of notation, we do not show the element index in the following. The vector f
below contains the flux values at solution points.

First stage.

F := f(un)+
1
4
�t

@

@ t
f(un)� 1

�t/2

Z
tn

tn+1/2

f(u)dt (7.9)

To obtain fourth order accuracy, the approximation for @

@ t
f(un) needs to be third

order accurate (Appendix I) which we obtain as

ft(�; t)

� ¡f(u(�; t+2�t))+ 8 f(u(�; t+�t))¡ 8 f(u(�; t¡�t))+ f(u(�; t¡ 2�t))
12�t

� ¡f(u+2�tut)+ 8 f(u+�tut)¡ 8 f(u¡�tut)+ f(u¡ 2�tut)
12�t

��������
(�;t)

Thus, the time averaged flux is computed as

F=f+
1
4
f(1)

where

u(1) = ¡ �t
�xe

Df

f(1) =
1
12

[¡f(u+2 u(1))+ 8 f(u+u(1))¡ 8 f(u¡u(1))+ f(u¡2 u(1))]

Second stage.
The time averaged flux is computed as

F�=f+
1
6
(f(1)+2 f*(1))

where

u*(1) = ¡ �t
�xe

Df*

f*(1) =
1
12

[¡f(u*+2 u*(1))+ 8 f(u*+u*(1))¡ 8 f(u*¡u*(1))+ f(u*¡2 u*(1))]

Remark 7.1. The f; f(1) computed in the first stage are reused in the second.
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7.2.4. Numerical flux

The numerical flux couples the solution between two neighbouring cells in a discontin-
uous Galerkin type method. In RK methods, the numerical flux is a function of the
trace values of the solution at the faces. In the MDRK scheme, we have constructed
time average fluxes at all the solution points inside the element and we want to use this
information to compute the time averaged numerical flux at the element faces. The
simplest numerical flux is based on Lax-Friedrich type approximation and is similar to
the one used for LW [137] and is termed D1 dissipation as in Section 4.3
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(7.10)

which consists of a central flux and a dissipative part. As in Chapter 4, the numerical
flux of the form (7.10) leads to somewhat reduced CFL numbers which is experi-
mentally verified and discussed in Section 7.3. The flux (7.10) also lacks the upwind
property even for linear advection equation. An alternate form of the numerical flux
is obtained by evaluating the dissipation term using the time average solution, leading
to the formula similar to D2 dissipation of Section 4.3
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where

U=u+
1
4

u(1)

U �=u+
1
6
(u(1)+2 u*(1))

(7.12)

are the time average solutions. Following Chapter 4, we will refer to the above two
forms of dissipation as D1 and D2, respectively. The dissipation model D2 is not
computationally expensive compared to the D1 model since all the quantities required
to compute the time average solutions U ;U � are available during the Lax-Wendroff
procedure. It remains to explain how to compute F

e+
1

2

� ; F
e+

1

2

�� appearing in the cen-

tral part of the numerical flux. There were two ways introduced for Lax-Wendroff in
Chapter 4 to compute the central flux, termed AE and EA. We explain how the two
apply to MDRK in the next two subsections.

7.2.5. Numerical flux � average and extrapolate to face (AE)

In each element, the time average fluxes Fh�;Fh�� corresponding to each stage have been
constructed using the Lax-Wendroff procedure. The simplest approximation that can
be used for F

e+
1

2

� ;F
e+

1

2

�� in the central part of the numerical flux is to extrapolate the

fluxes Fh�;Fh��to the faces

F
e+

1

2

� ;F
e+

1

2

�� =Fh
�(x

e+
1

2

� );Fh
��(x

e+
1

2

� )
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As in Chapter 4, we will refer to this approach with the abbreviation AE. However,
as shown in the numerical results, this approximation can lead to sub-optimal conver-
gence rates for some non-linear problems. Hence we propose another method for the
computation of the inter-cell flux which overcomes this problem as explained next.

7.2.6. Numerical flux � extrapolate to face and average (EA)

Instead of extrapolating the time average flux from the solution points to the faces,
we can instead build the time average flux at the faces directly using the approximate
Lax-Wendroff procedure that is used at the solution points. The flux at the faces is
constructed after the solution is evolved at all the solution points. In the following
equations, � denotes either the left face (L) or the right face (R) of a cell. For �2fL;
Rg, we compute the time average flux at the faces of the eth element by the following
steps, where we suppress the element index since all the operations are performed inside
one element.

Stage 1.

u�
� = V�

>(u�u(1))

f�
(1) =

1
12

[¡f(u�+2)+ 8 f(u�
+)¡ 8 f(u�¡)+ f(u�

¡2)]

F� = f(u�)+
1
4
f�
(1)

Stage 2.

u�
�� = V�

>(u*�u*(1))

u�
��2 = V�

>(u*�2 u*(1))

f�
�(1) =

1
12

[¡f(u��+2)+ 8 f(u�
�+)¡ 8 f(u��¡)+ f(u�

�¡2)]

F�
� = f(u�)+

1
6
(f�

(1)+2 f�
�(1))

Remark 7.2. The f(u�), f�
(1) computed in the first stage are reused in the second

stage.

We see that the solution is first extrapolated to the cell faces and the same finite
difference formulae for the time derivatives of the flux which are used at the solution
points, are also used at the faces. The numerical flux is computed using the time
average flux built as above at the faces; the central parts of the fluxes F

e+
1

2

� ;F
e+

1

2

�� in
equations (7.10), (7.11) are computed as

F
e+

1

2

¡ =(FR)e; F
e+

1

2

+ =(FL)e+1

F
e+

1

2

�¡ =(FR
�)e; F

e+
1

2

�+ =(FR
�)e+1
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We will refer to this method with the abbreviation EA.

7.3. Fourier stability analysis

We now perform Fourier stability analysis of the MDRK scheme applied to the linear
advection equation, ut+ a ux= 0, where a is the constant advection speed. We will
assume that the advection speed a is positive and denote the CFL number by

�=
a�t
�x

We will perform the stability analysis for the MDRK scheme with D2 dissipation
flux (7.11) and thus will like to write the two stage scheme as

ue
n+1=¡�2A¡2ue¡2¡� A¡1ue¡1n +(1¡� A0) uen¡� A+1ue+1n ¡�2A+2ue+2n (7.13)

where the matrices A¡2;A¡1;A0;A+1;A+2 depend on the choice of the dissipation model
in the numerical flux. We will perform the final evolution by studying both the stages.

7.3.1. Stage 1

We will try to write the first stage as

ue�=¡� A¡1
(1)ue¡1n +(1¡� A0

(1)) uen¡� A+1
(1)ue+1n (7.14)

Since ft=aut, the time average flux for the first stage at all solution points is given by

Fe=aUe where Ue=T(1)ue and T(1)=I¡�
4

D

The extrapolations to the cell boundaries are given by

Fh
�(x

e¡ 1

2

+ )=VL
TFe; Fh

�(x
e+

1

2

+ )=VR
TFe

The D2 dissipation numerical flux is given by

Fe+
1

2

=VR
TFe=aVR

TT(1)ue

and the flux differences at the face as

Fe¡ 1

2

¡Fh�(xe¡ 1

2

+ )= aVR
Tue¡1¡aVL

TT(1)ue; Fe+ 1

2

¡Fh�(xe+ 1

2

¡ )= 0

so that the flux derivative at the solution points is given by

@� Fh = bL(aVR
TT(1)ue¡1¡aVL

TT(1)ue)+ aDT(1)ue
= a bLVR

TT(1)ue¡1+a (DT(1)¡bLVL
TT(1)) ue

Since the evolution to u� is given by

u�=un¡�t/2
�xe

@� Fh (7.15)
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the matrices in (7.14) are given by

A¡1
(1)=

1
2
bLVR

TT(1); A0
(1)=

1
2
(DT(1)¡bLVL

TT(1)); A+1
(1)=0 (7.16)

The upwind character of the D2 dissipation flux leads to A+1
(1)=0 and the right cell does

not appear in the update equation.

7.3.2. Stage 2

After stage 1, we have u�; un and both are used to obtain un+1. In this case,

Fe
�=aUe

�; Ue
�=uen¡

1
6
� Duen¡

1
3
� Due�=T(2)uen+T(2;�)ue�

where

T(2)=I¡1
6
� D; T(2;�)=¡1

3
� D

The numerical fluxes are given by

F
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1

2

� =
1
2
[VR

TFe
�+VL

TFe+1
� ]¡ 1

2
a (VL

TUe+1
� ¡VR

TUe
�)

=
1
2
a [VR

TUe
�+VL
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� ]¡ 1

2
a (VL

TUe+1
� ¡VR

TUe
�)

= aVR
TUe

�

F
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2

� = aVR
TUe¡1

�

and the face extrapolations are
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��(x
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¡ ) = VR
TFe

� = aVR
TUe

�
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��(x

e¡ 1

2

+ ) = VL
TFe
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�

Thus, the flux difference at the faces is

F
e+

1

2

� ¡Fh��(xe+ 1

2

¡ ) = 0

F
e¡ 1

2

� ¡Fh��(xe¡ 1

2

+ ) = a (VR
TUe¡1

� ¡VL
TUe

�)
(7.17)

the flux derivative at the solution points is given by

@� Fh
� = aDUe

�+a bL(VR
TUe¡1

� ¡VL
TUe

�)

= a bLVR
TUe¡1

� +a (D¡bLVL
T)Ue

� (7.18)

We now expand Ue
� in terms of uen as follows

Ue
2=T(2)uen+T(2;�)ue�

where

T(2)=I¡1
6
� D; T(2;�)=¡1

3
� D
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Thus, by

un+1=un¡ �t
�xe

@� Fh
�

and also expanding u� from (7.15), the matrices in (7.13) are given by

A¡2 = ¡bLVR
TT(2;�)A¡1

(1)

A¡1 = bLVR
T(T(2)+T(2;�)(1¡� A0

(1)))¡� (D¡bLVL
T) T(2;�)A¡1

(1)

A0 = ¡(D¡bLVL
T) (T(2)+T(2;�)(I¡� A0

(1)))
A+1=A+2 = 0

where Ai
(1) are defined in (7.16). The upwind character of D2 flux is the reason why

we have A+1=A+2=0.

Stability analysis. We assume a solution of the form uen=ûk
n exp(i k xe) where i=

¡1
p

, k is the wave number which is an integer and ûk
n2RN+1 are the Fourier ampli-

tudes; substituting this ansatz in the update equation (7.13), we get

ûk
n+1=H(�; k) ûk

n

where

H=¡�2A¡2exp(¡2 i �)¡� A¡1exp(¡i �)+ I¡� A0¡� A+1exp(i �)¡�2A+2exp(2 i �)

and �= k�x is the non-dimensional wave number. The explicit expression of H is
then used to numerically compute the CFL number as in Section 4.4. The results
of this numerical investigation of stability are shown in Table 7.1 for two correction
functions with polynomial degree N =3. The comparison is made with CFL numbers
of MDRK-D1 (7.10) which are experimentally obtained from the linear advection test
case (Section 7.5.1.1), i.e., using time step size that is slightly larger than these numbers
causes the solution to blow up.

Correction
D1�

Experimentally
obtained

�
D2 D2

D1
LW-D2
(N =3)

MDRK-D2
LW-D2

Radau �0.09 0.107 1.19 0.103 1.04
g2 �0.16 0.224 1.4 0.170 1.31

Table 7.1. CFL numbers for MDRK scheme with Radau and g2 correction functions.

We see that dissipation model D2 has a higher CFL number compared to dissipation
model D1. The CFL numbers for the g2 correction function are also significantly higher
than those for the Radau correction function. The MDRK scheme also has higher CFL
numbers than the single stage LW method for degree N =3, which is especially true
with the g2 correction function. The optimality of these CFL numbers has been verified
by experiment on the linear advection test case (Section 7.5.1.1), i.e., the solution
eventually blows up if the time step is slightly higher than what is allowed by the CFL
condition.

7.3 Fourier stability analysis 139



7.4. Blending scheme

The MDRK scheme (7.6) gives a high (fourth) order method for smooth problems, but
most practical problems involving hyperbolic conservation laws consist of non-smooth
solutions like shocks. Thus, we develop the blending scheme used for LWFR from
Section 5.3.1 for the MDRK scheme. The idea is to apply the limiter at each MDRK
stage.

Let us write the MDRK update equation (7.6)

ue
H;�=uen¡

�t/2
�xe

Re
H ; ue

H;n+1=uen¡
�t
�xe

Re
�;H (7.19)

where ue is the vector of nodal values in the element. We use the lower order schemes as

ue
L;�=uen¡

�t/2
�xe

Re
L; ue

L;n+1=uen¡
�t
�xe

Re
�;L (7.20)

Then the two-stage blended scheme is given by

ue� = (1¡�e) ue
H;�+�e ue

L;�=uen¡
�t/2
�xe

[(1¡�e)Re
H+�eRe

L]

ue
n+1 = (1¡�e) ue

H;n+1+�e ue
L;n+1=uen¡

�t
�xe

[(1¡�e)Re
�;H+�eRe

�;L]
(7.21)

where �e2 [0;1]must be chosen based on the local smoothness indicator of Section 5.3.2.
As in Section 5.3.1, if �e= 0 then we obtain the high order MDRK scheme, while
if �e=1 then the scheme becomes the low order scheme that is less oscillatory. The
lower order scheme will either be a first order finite volume scheme (Section 5.3.3)
or a high resolution scheme based on MUSCL-Hancock idea (Section 5.4). In either
case, the common structure of the low order scheme at each stage will be the same
as in Section 5.3.1. However, there is one thing that we would like to clarify in the
structure of the lower order method (7.20). In the first stage, the lower order residual

Re
L performs evolution from time tn to t

n+
1

2 while, in the second stage, Re
�;L per-

forms evolution from tn to tn+1. Intuition may suggest evolving from t
n+

1

2 to tn+1

in the next stage, but that will violate the conservation property because of the expres-
sion of second stage of MDRK (7.3, 7.19).

Note that the subcells will be the same as in the single stage LWFR scheme, see
Figure 5.1. Since the lower order scheme for the second stage is an evolution from
tn to tn+1, its explanation will be exactly the same as in Section 5.3.1. With a slight
modification, we will obtain the lower order scheme used in the first stage, but we write
it here for clarity. The low order scheme is obtained by updating the solution in each
of the subcells by a finite volume scheme,

ue;0
L;� = ue;0

n ¡ �t/2
w0�xe

[f1

2

e¡Fe¡ 1

2

]

ue;p
L;� = ue;p

n ¡ �t/2
wp�xe

[f
p+

1

2

e ¡ f
p¡ 1

2

e ]; 1� p�N ¡ 1

ue;N
L;� = ue;N

n ¡ �t/2
wN�xe

[Fe+ 1

2

¡ f
N¡ 1

2

e ]

(7.22)
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The inter-element fluxes Fe+ 1

2

used in the low order scheme are same as those used in

the high order MDRK scheme in equation (7.5). As in Chapter 5, Rusanov's flux [152]
will be used for the inter-element fluxes and in the lower order scheme. The element
mean value obtained by the low order scheme satisfies

u�e
L;�=

X
p=0

N

ue;p
L;�wp=u�e

n¡ �t/2
�xe

(Fe+ 1

2

¡Fe¡ 1

2

) (7.23)

which is identical to the update equation by the MDRK scheme given in equation (7.8).
The element mean in the blended scheme evolves according to

u�e
� = (1¡�e) (u�e)H;�+�e (u�e)

L;�

= (1¡�e)
�
u�e
n¡ �t/2

�xe
(Fe+ 1

2

¡Fe¡ 1

2

)

�
+�e

�
u�e
n¡ �t/2

�xe
(Fe+ 1

2

¡Fe¡ 1

2

)

�
= u�e

n¡ �t/2
�xe

(Fe+ 1

2

¡Fe¡ 1

2

)

and hence the blended scheme is also conservative. The similar arguments will apply
to the second stage, where the lower order scheme is as described in Section 5.3.1, and
we will have by (7.8)

u�e
� = u�e

n¡ �t/2
�xe

(Fe+ 1

2

¡Fe¡ 1

2

)

u�e
n+1 = u�e

n¡ �t
�xe

(F
e+

1

2

� ¡F
e¡ 1

2

� )

Overall, all three schemes, i.e., lower order, MDRK and the blended scheme, predict
the same mean value.

The inter-element fluxes Fe+ 1

2

;F
e+

1

2

� are used both in the low and high order schemes.

To achieve high order accuracy in smooth regions, this flux needs to be high order
accurate, however it may produce spurious oscillations near discontinuities when used
in the low order scheme. A natural choice to balance accuracy and oscillations is to take

Fe+ 1

2

= (1¡�e+ 1

2

)F
e+

1

2

HO +�e+ 1

2

fe+ 1

2

F
e+

1

2

� = (1¡�e+ 1

2

)F
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1

2

HO�+�e+ 1

2

fe+ 1

2

(7.24)

where F
e+

1

2

HO;F
e+

1

2

HO� are the high order inter-element time-averaged numerical fluxes used

in the MDRK scheme (7.11) and fe+ 1

2

is a lower order flux at the face xe+ 1

2

shared

between FR elements and subcells (5.14, 5.20). The construction of specific lower
order schemes as first order (Section 5.3.3) or MUSCL-Hancock (Section 5.4) remains
as in Chapter 5, and the same goes for flux limiting of (7.24) to enforce admissibility
in means (Definition 5.2). Once admissibility preservation in means is obtained, the
scaling limiter of [205] (Appendix F), is used to obtain an admissibility preserving
scheme (Definition 5.1).
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7.5. Numerical results
In this section, we test the MDRK scheme with numerical experiments using polyno-
mial degree N =3 in all results. Most of the test cases from the previous chapters were
tried and were seen to validate our claims, but we only show the important results
here. We also tested all the benchmark problems for higher order methods in [132],
and show some of the results from there.

7.5.1. Scalar equations
We perform convergence tests with scalar equations. The MDRK scheme with D1 and
D2 dissipation is tested using the optimal CFL numbers from Table 7.1. We make a
comparison with RKFR scheme with polynomial degree N =3 described in Section 3.4
using the SSPRK scheme from [167]. The CFL number for the fourth order RK scheme
is taken from [76]. In many problems, we compare with Gauss-Legendre (GL) solution
points and Radau correction functions, and Gauss-Legendre-Lobatto (GLL) solution
points with g2 correction functions. These combinations are important because they
are both variants of Discontinuous Galerkin methods [94, 57] (Appendix B).

7.5.1.1. Linear advection equation
The initial condition u(x;0)= sin(2�x) is taken with periodic boundaries on [0;1]. The
error norms are computed at time t= 2 units and shown in Figure 7.1. The MDRK
scheme with D2 dissipation (MDRK-D2) scheme shows optimal order of convergence
and has errors close to that MDRK-D1 and the RK scheme for all the combinations
of solution points and correction functions.
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Figure 7.1. Error convergence for constant linear advection equation comparing MDRK and RK
- (a) GL points with Radau correction, (b) GLL points with g2 correction

7.5.1.2. Variable advection equation

ut+ f(x; u)x=0; f(x; u)= a(x)u

The velocity is a(x) = x2, u0(x) = cos(� x/2), x 2 [0.1; 1] and the exact solution is
u(x; t)=u0(x/(1+ t x))/(1+ t x)2. Dirichlet boundary conditions are imposed on the
left boundary and outflow boundary conditions on the right. This problem is non-linear
in the spatial variable, i.e., if Ih is the interpolation operator, Ih(a uh) =/ Ih(a) Ih(uh).
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Thus, the AE and EA schemes are expected to show different behavior, unlike the
previous test.

The grid convergence analysis is shown in Figure 7.2. In Figure 7.2a, the scheme
with AE shows larger errors compared to the RK scheme though the convergence rate
is optimal. The MDRK scheme with EA shown in the middle figure, is as accurate
as the RK scheme. The last figure compares AE and EA schemes using GL solution
points, Radau correction function and D2 dissipation; we clearly see that EA scheme
has smaller errors than AE scheme.
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Figure 7.2. Error convergence for variable linear advection equation with a(x)=x2; (a)AE scheme,
(b) EA scheme, (c) AE versus EA

7.5.1.3. Burgers' equations

The one dimensional Burger's equation is a conservation law of the form ut+ f(u)x=0
with the quadratic flux f(u)=u2/2. For the smooth initial condition u(x;0)=0.2sin(x)
with periodic boundary condition in the domain [0; 2 �], we compute the numerical
solution at time t=2 when the solution is still smooth. Figure 7.3a compares the error
norms for the AE and EA methods for the Rusanov numerical flux, and using GL
solution points, Radau correction and D2 dissipation. The convergence rate of AE is
less than optimal and close to O(h3+1/2). In Figure 7.3b, we see that no scheme shows
optimal convergence rates when g2 correction + GLL points is used. The comparison
between D1, D2 dissipation is made in Figure 7.4 and their performances are found to
be similar.
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Figure 7.3. Comparing AE and EA schemes using D2 dissipation for 1-D Burgers' equation at
t=2. (a) GL points with Radau correction, (b) GLL points with g2 correction.
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Figure 7.4. Comparing D1 and D2 dissipation for 1-D Burgers' equation at t=2. (a) GL points
with Radau correction, (b) GLL points with g2 correction

7.5.2. 1-D Euler equations
We now consider the 1-D Euler's equations (4.16) and compute the time step size
with (4.18) with CFL=0.107 (Table 7.1). The coefficient CCFL= 0.98 is used in tests,
unless specified otherwise.

7.5.2.1. Blast wave
This test is as described in Section 4.8.5. As in the case of the LWFR scheme, the
numerical solutions give negative pressure if the positivity correction is not applied.
With a grid of 400 cells using polynomial degree N =3, we run the simulation till the
time t=0.038 where a high density peak profile is produced. As tested in Section 4.8.5,
we compare first order (FO) and MUSCL-Hancock (MH) blending schemes, and TVB
limiter with parameter M = 300 [137] (TVB-300). We compare the performance of
limiters in Figure (7.5) where the approximated density and pressure profiles are com-
pared with a reference solution computed using a very fine mesh. Looking at the peak
amplitude and contact discontinuity, it is clear that MUSCL-Hancock blending scheme
gives the best resolution, especially when compared with the TVB limiter.
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Figure 7.5. Blast wave problem using first order (FO) and MUSCL-Hancock blending schemes,
and TVB limited scheme (TVB-300) with parameter M =300. (a) Density, (b) Pressure profiles are
shown at t= 0.038 on a mesh of 400 cells.
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7.5.2.2. Titarev Toro

This is an extension of the Shu-Osher (Section 4.8.4) problem given by Titarev and
Toro [176] and the initial data comprises of a severely oscillatory wave interacting with
a shock

(�; v; p)=

�
(1.515695; 0.523346; 1.805); ¡5� x�¡4.5
(1+ 0.1 sin(20�x); 0; 1); ¡4.5<x� 5

The physical domain is [¡5; 5] and transmissive boundary condition is used at both
ends. This problem tests the ability of a high-order numerical scheme to capture
the extremely high frequency waves. The smooth density profile passes through the
shock and appears on the other side, and its accurate computation is challenging due
to numerical dissipation. Due to presence of both spurious oscillations and smooth
extrema, this becomes a good test for testing robustness and accuracy of limiters. We
discretize the spatial domain with 800 cells using polynomial degreeN=3 and compare
blending schemes. The density profile at t=5 is shown in Figure 7.6. As expected, the
MUSCL-Hancock (MH) blending scheme is superior to the First Order (FO) blending
scheme and has nearly resolved the smooth extrema.
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Figure 7.6. Titarev-Toro problem, comparing First Order (FO) and MUSCL-Hancock (MH)
blending (a) Complete plot, (b) Profile zoomed near smooth extrema on a mesh of 800 cells.

7.5.2.3. Large density ratio Riemann problem

The second example is the large density ratio problem with a very strong rarefaction
wave [174]. The initial condition is given by

(�; v; p)=

�
(1000; 0; 1000); x< 0.3
(1; 0; 1); 0.3<x

The computational domain is [0; 1] and transmissive boundary condition is used at
both ends. The density and pressure profile on a mesh of 500 elements at t= 0.15 is
shown in Figure 7.7. The MH blending scheme is giving better accuracy even in this
tough problem.
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Figure 7.7. High density problem at t= 0.15 on a mesh of 500 elements (a) Density plot, (b)
Pressure plot

7.5.2.4. Sedov's blast

This test case is as described in Section 5.7.1.3. Nonphysical solutions are obtained
if the proposed admissibility preservation corrections are not applied. The density
and pressure profiles at t= 0.001 are obtained using blending schemes are shown in
Figure 7.8. In Chapter 5, the TVB limiter was not used in this test as the proof
of admissibility preservation depended on the blending scheme. Here, by using the
generalized admissibility preserving scheme of Chapter 6, [11], we are able to use the
TVB limiter. However, as expected, the TVB limiter is less accurate and unable to
control the oscillations.
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Figure 7.8. Sedov's blast wave problem, numerical solution using first order (FO) and MUSCL-
Hancock blending schemes, and TVD (a) Density, (b) Pressure profiles are shown at t= 0.001 on a
mesh of 201 cells.

7.5.3. 2-D Euler's equations
We consider the two-dimensional Euler equations of gas dynamics given by (2.13). The
time step size is computed as in (4.30) with CFL=0.107 (Table 7.1) and CCFL= 0.98
unless otherwise specified.
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As in Chapter 5, for verification of some of our numerical results and to demon-
strate the accuracy gain observed in [19] of using MUSCL-Hancock reconstruction
using Gauss-Legendre points, we will compare our results with the first order blending
scheme using Gauss-Legendre-Lobatto (GLL) points of [90] available in Trixi.jl [141].
The accuracy benefit is expected since GL points and quadrature are more accurate
than GLL points, and MUSCL-Hancock is also more accurate than first order finite
volume method.

7.5.3.1. Double Mach reflection

The description and significance of this test have been given in Section 4.11.2. The
simulation is run on a mesh of 600� 150 elements using degree N =3 polynomials up
to time t= 0.2. In Figure 7.9, we compare the results of Trixi.jl with the MUSCL-
Hancock blended scheme zoomed near the primary triple point. As expected, the small
scale structures are captured better by the MUSCL-Hancock blended scheme.

(a) MDRK (b) Trixi.jl

Figure 7.9. Double Mach reflection problem, density plot of numerical solution at t= 0.2 on a
600� 150 mesh zoomed near the primary triple point.

7.5.3.2. Rotational low density problem

These problems are taken from [132] where the solution consists of hurricane-like flow
evolution and has one-point vacuum in the center with rotational velocity field. The
initial condition is given by

(�; u; v; p)= (�0; v0 sin �;¡v0 cos �;A �0

)

where �= arctan(y/x), A= 25 is the initial entropy, �= 1 is the initial density, gas
constant 
=2. The initial velocity distribution has a nontrivial transversal component,
which makes the flow rotational. The solutions are classified [204] into three types
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according to the initial Mach number M0= jv0j/c0, where c0= p0(�0)=A
�0

¡1 is the

sound speed.

1. Critical rotation withM0= 2
p

. This test has an exact solution with explicit
formula. The solution consists of two parts: a far field solution and a near-
field solution. The former far field solution is defined for r � 2 t p0(�0)

p
, r=

x2+ y2
p

,8>>>>>>>><>>>>>>>>:
U(x; y; t) =

1

r
(2 t p0

0 cos �+ 2 p0
0

p
r2¡ 2 t2 p00

p
sin �)

V (x; y; t) =
1

r
(2 t p0

0 sin �¡ 2 p0
0

p
r2¡ 2 t2 p00

p
cos �)

�(x; y; t) = �0
p(x; y; t) = A�0




(7.25)

and the near-field solution is defined for r < 2 t p0(�0)
p

U(x; y; t)=
x+ y

2 t
; V (x; y; t)=

¡x+ y

2 t
; �(x; y; t)=

r2

8At2

The curl of the velocity in the near-field is

curl(U ; V )=Vx¡Uy=¡
1
2 t

=/ 0

and the solution has one-point vacuum at the origin r = 0. This is typical
hurricane-like solution that is singular, particularly near the origin r=0. There
are two issues here challenging the numerical schemes: one is the presence of the
vacuum state which examines whether a high order scheme can keep the pos-
itivity preserving property; the other is the rotational velocity field for testing
whether a numerical scheme can preserve the symmetry. In this regime, we
take v0= 10 on the computational domain [¡1; 1]2 with �x=�y=1/100. The
boundary condition is given by the far field solution in (7.25).

2. High-speed rotation with M0> 2
p

. For this case, v0= 12.5, so that the
density goes faster to the vacuum and the fluid rotates severely. The physical
domain is [¡2; 2]2 and the grid spacing is �x=�y=1/100. Outflow boundary
conditions are given on the boundaries.Because of the higher rotation speed, this
case is tougher than the first one, and can be used to validate the robustness
of the higher-order scheme.

3. Low-speed rotation withM0< 2
p

. In this test case, we take v0=7.5 making
it a rotation with lower speed than the previous tests. The outflow boundary
conditions are given as in the previous tests. The simulation is performed in
the domain [¡1; 1]2 till t= 0.045.

The density profile for the flow with critical speed are shown in Figure 7.10 including
a comparison with exact solution at a line cut of y = 0 in Figure 7.10b, showing
near overlap. In Figure 7.11a, we show the line cut of density profile at y=0 for the
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three rotation speeds. In Figure 7.11b, we show streamlines for high rotational speed,
showing symmetry.
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Figure 7.10. Density profile of rotational low density problem at critical speed (a) Pseudocolor
plot (b) Line cut at y=0 on a mesh with �x=�y=1/100.
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Figure 7.11. Rotational low density problem (a) Density profile line cut at y = 0 for different
rotational speeds, (b) Stream lines for high rotational speed.

7.5.3.3. Two Dimensional Riemann problem

This test case is as described in Section 5.9.3. The simulations are performed with
transmissive boundary conditions on an enlarged domain up to time t= 0.25. The
density profiles obtained from the MUSCL-Hancock blending scheme and Trixi.jl are
shown in Figure 7.12. We see that both schemes give similar resolution in most regions.
As in LWFR scheme, the MUSCL-Hancock blending scheme gives better resolution of
the small scale structures arising across the slip lines.
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(a) Trixi.jl (b) MDRK

Figure 7.12. 2-D Riemann problem, density plots of numerical solution at t=0.25 for degree N =3
on a 256� 256 mesh (a) Trixi.jl, (b) MDRK

7.5.3.4. Rayleigh-Taylor instability

The last problem is the Rayleigh-Taylor instability to test the performance of higher-
order scheme for the conservation laws with source terms, and the governing equations
are written as

@
@t

0BBBBBB@
�
� u
� v
E

1CCCCCCA+ @
@x

0BBBB@
� u

p+ � u2

� u v
(E+ p)u

1CCCCA+ @
@y

0BBBB@
� v
� u v

p+ � v2

(E+ p) v

1CCCCA=
0BBBB@

0
0
�
� v

1CCCCA
The implementation of MDRK with source terms is based on [11] where an approx-
imate Lax-Wendroff procedure is also applied to the source term. The following descrip-
tion is taken from [132]. The Rayleigh-Taylor instability happens on the interface
between fluids with different densities when an acceleration is directed from the heavy
fluid to the light one. The instability with fingering nature generates bubbles of light
fluid rising into the ambient heavy fluid and spikes of heavy fluid falling into the
light fluid. The initial condition of this problem [161] is given as follows

(�; u; v; p)=

�
(2; 0;¡0.025 a cos(8�x); 2 y+1); y� 0.5;
(1; 0;¡0.025 a cos(8�x); y+ 1.5); y > 0.5

where a= 
 p/�
p

is the sound speed and 
=5/3. The computational domain is [0;
0.25]� [0; 1]. The reflecting boundary conditions are imposed for the left and right
boundaries. At the top boundary, the flow variables are set as (�; u; v; p) = (1; 0; 0;
2.5). At the bottom boundary, they are (�; u; v; p) = (2; 0; 0; 1). The uniform mesh
with 64� 256 elements is used in the simulation. The density distributions at t=1.5;
1.75; 2; 2.25; 2.5 are presented in Figure 7.13. It is a test to check the suitability of
higher-order schemes for the capturing of interface instabilities.
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(a) t= 1.5 (b) t= 1.75 (c) t=2 (d) t= 2.25 (e) t= 2.5

Figure 7.13. Rayleigh-Taylor instability on a 64� 256 mesh

7.6. Summary and conclusions

This chapter introduces fourth order multiderivative Runge-Kutta (MDRK) scheme
of [119] in the conservative, quadrature free Flux Reconstruction framework to solve
hyperbolic conservation laws. The idea is to cast each MDRK stage as an evolution
involving a time average flux which is approximated by the Jacobian free Approximate
Lax-Wendroff procedure. The numerical flux is carefully computed with accuracy and
stability in mind. In particular, the D2 dissipation and EA flux of Chapter 4 have been
introduced which enhance stable CFL numbers and accuracy for nonlinear problems
respectively. The stable CFL numbers are computed using Fourier stability analysis
for two commonly used correction functions gRadau and g2, showing the improved CFL
numbers. Convergence analysis for non-linear problems was performed which revealed
that optimal convergence rates were only shown when using the EA flux. The shock
capturing blending scheme of Chapter 5 has also been introduced for the MDRK
scheme applied at each stage. The scheme is provably admissibility preserving and
good at capturing small scale structures. The claims are validated by numerical experi-
ments for compressible Euler's equations with the modern test suite [132] of high order
methods.
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Chapter 8
Curvilinear grids

8.1. Introduction
This chapter extends the LWFR scheme to curvilinear grids that are body-fitted to
handle curved geometries. These geometries occur in practical problems, especially in
CFD. Adaptive mesh refinement is also developed for LWFR using the Mortar Element
Method [106] in order to have efficient resolution of localized flows. The extension is
conservative, free stream and admissibility preserving. In the previous chapters, the
time step size was computed based on a wave speed estimate by using optimal CFL
numbers obtained from a Fourier stability analysis. The Fourier stability analysis is
based on uniform Cartesian grids and does not apply to the curvilinear case. Thus,
usage of a wave speed based formula for computing time step sizes for curvilinear grids
requires fine tuning of the CFL number for each problem and geometry. In order to
minimize fine tuning, we propose an error based time step computation method for
the LWFR method. Numerical results for compressible Euler's equations are used to
validate LWFR on adaptively refined, curvilinear grids with error based time stepping.
The performance improvement of error based time stepping over CFL based time
stepping is also shown.

The chapter is organized as follows. In Section 8.2, we review notations and the
transformation of conservation laws from curved elements to a reference cube fol-
lowing [105, 103]. In Section 8.3, the LWFR scheme of Chapter 4 is extended to
curvilinear grids. In Section 8.3.1, we review FR on curvilinear grids and use it to
construct LWFR on curvilinear grids in Section 8.3.2. Section 8.3.4 shows that the
free stream preservation condition of LWFR is the standard metric identity of [105].
In Section 8.4, the admissibility preserving subcell limiter for LWFR Chapter 5 is
extended to curvilinear grids. In Section 8.5, the Mortar Element Method for treatment
of non-conformal interfaces in AMR of [106] is extended to LWFR. In Section 8.6,
error-based time stepping methods are discussed; Section 8.6.1 reviews error-based
time stepping methods for Runge-Kutta and Section 8.6.2 introduces an embedded
error-based time stepping method for LWFR. In Section 8.7, numerical results are
shown to demonstrate the scheme's capability of handling adaptively refined curved
grids and benefits of error-based time stepping. Section 8.8 gives a summary and draws
conclusions from the work.

8.2. Conservation laws and curvilinear grids
The developments in this work are applicable to a wide class of hyperbolic conserva-
tion laws but the numerical experiments are performed on 2-D compressible Euler's
equations (2.13). For the sake of simplicity and generality, we subsequently explain
the development of the algorithms for a general hyperbolic conservation law written as

ut+rx � f(u)=0 (8.1)
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where u2Rp is the vector of conserved quantities, f(u) = (f1; : : : ; fd)2Rp�d is the
corresponding physical flux, x is in domain 
�Rd and

rx � f =
X
i=1

d

@xifi (8.2)

Let us partition 
 into M non-overlapping quadrilateral/hexahedral elements 
e such
that


=
[
e=1

M


e (8.3)

The elements 
e are allowed to have curved boundaries in order to match curved
boundaries of the problem domain 
. In this chapter, we take the reference element
to be 
o = [¡1; 1]d in contrast to the previous chapters where it was [0; 1]d. This
choice is made for compatibility with Trixi.jl [141]. To construct the numerical
approximation, we map each element 
e to a reference element 
o= [¡1; 1]d by a
bijective map �e: 
o!
e

x=�e(�)

where �=(�i)i=1d are the coordinates in the reference element, and the subscript e will
usually be suppressed. We will denote a d-dimensional multi-index as p= (pi)i=1

d . In
this work, the reference map is defined using tensor product Lagrange interpolation of
degree N � 1,

�(�)=
X
p2NNd

x̂p `p(�) (8.4)

where

NN
d = fp=(p1; : : : ; pd): pi2f0; 1; : : : ; N g; 1� i� dg (8.5)

and f`pgp2NNd is the degree N Lagrange polynomial corresponding to the Gauss-
Legendre-Lobatto (GLL) points f�pgp2NNd so that �(�p) = x̂p for all p 2NN

d . Thus,
the points f�pgp2NNd are where the reference map will be specified and they will also
be taken to be the solution points of the Flux Reconstruction scheme throughout
this chapter. The functions f`pgp2NNd can be written as a tensor product of the 1-D
Lagrange polynomials f`pigpi=0N of degree N corresponding to the GLL points f�pigpi=0N

`p(�)=
Y
i=1

d

`pi(�
i); `pi(�

i)=
Y

k=0;k=/ i

N
�i¡ �pk
�pi¡ �pk

(8.6)

The numerical approximation of the conservation law will be developed by first trans-
forming the PDE in terms of the coordinates of the reference cell. To do this, we need
to introduce covariant and contravariant basis vectors with respect to the reference
coordinates.
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Definition 8.1. (Covariant basis) The coordinate basis vectors faigi=1d are defined
so that ai;aj are tangent to f�k= constg where i; j ; k are cyclic. They are explicitly
given as

ai=(ai;1; : : : ; ai;d)=
@x
@ �i

; 1� i� d (8.7)

Definition 8.2. (Contravariant basis) The contravariant basis vectors faigi=1d

are the respective normal vectors to the coordinate planes f�i= constgi=13 . They are
explicitly given as

ai=(a1
i ; : : : ; ad

i)=rx �i; 1� i� d (8.8)

The covariant basis vectors ai can be computed by differentiating the reference map
�(�). The contravariant basis vectors can be computed using [105, 103]

Jai=aj�ak (8.9)

where (i; j ; k) are cyclic, and J denotes the Jacobian of the transformation which also
satisfies

J =det
�
@x
@ �

�
=ai � (aj�ak) (i; j ; k) cyclic

The divergence of a flux vector can be computed in reference coordinates using the
contravariant basis vectors as [105, 103]

rx � f =
1
J

X
i=1

d
@
@ �i

(Jai � f) (8.10)

Consequently, the gradient of a scalar function � becomes

r �=
1
J

X
i=1

d
@
@ �i

[(Jai) �] (8.11)

Within each element 
e, performing change of variables with the reference map�e (8.10),
the transformed conservation law is given by

u~t+r� � f~=0 (8.12)

where

u~ = Ju; f~i= Jai � f =
X
n=1

d

J an
i fn (8.13)

The flux f~ is referred to as the contravariant flux.
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The vectors fJaigi=1d are called the metric terms and the metric identity is given by

X
i=1

d
@ (Jai)
@ �i

=0 (8.14)

The metric identity can be obtained by reasoning that the gradient of a constant
function is zero and using (8.11) or that a constant solution must remain constant
in (8.12). The metric identity is crucial for studying free stream stream preservation
of a numerical scheme.

Remark 8.3. The equations for two dimensional case can be obtained by setting
(�(�))3=x3(�)= �3 so that a3=(0; 0; 1).

8.3. LWFR on curvilinear grids

The solution of the conservation law will be approximated by piecewise polynomial
functions which are allowed to be discontinuous across the elements. In each element

e, the solution is approximated by

ûe
�(�)=

X
p

ue;p `p(�) (8.15)

where the `p are tensor-product polynomials of degree N which have been already
introduced before to define the map to the reference element. The hat will be used to
denote functions written in terms of the reference coordinates and the delta denotes
functions that are possibly discontinuous across the element boundaries. Note that the
coefficients ue;p are the values of the function at the solution points which are GLL
points.

8.3.1. Flux Reconstruction (FR)

Recall that we defined the multi-index p= (pi)i=1
d (8.5) where pi2 f0; 1 : : : ; N g. Let

i2f1; : : : ; dg denote a coordinate direction and S 2fL;Rg so that (S; i) corresponds
to the face @
o;is in direction i on side S which has the reference outward normal n̂S;i,
see Figure 8.1. Thus, @
o;iR denotes the face where reference outward normal is n̂R;i=ei
and @
o;iL has outward unit normal n̂L;i=¡n̂R;i.

The FR scheme is a collocation scheme at each of the solution points f�p=(�pi)i=1d ;

pi= 0; : : : ; N g. We will thus explain the scheme for a fixed �= �p and denote �iS as
the projection of �=(�j)j=1d to the face S=L;R in the ith direction (see Figure 8.1), i.e.,

(�i
S)j=

8<: �j ; j=/ i
¡1; j= i; S=L
+1; j= i; S=R

(8.16)
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Figure 8.1. Illustration of reference map, solution point projections, reference and physical normals.

The first step is to construct an approximation to the flux by interpolating at the
solution points

(f~e
�)i(�)=

X
q

(Jai � f)(�q) `q(�) (8.17)

which may be discontinuous across the element interfaces. In order to couple the
neighbouring elements and ensure conservation property, continuity of the normal flux
at the interfaces is enforced by constructing the continuous flux approximation using
the FR correction functions gL; gR [94]. We construct this for the contravariant flux
f~� (8.17) by performing correction along each direction i,

(f~e(�))i = (f~e
�(�))i + ((f~e � n̂R;i)�¡ f~e� � n̂R;i)(�iR) gR(�pi)

¡ ((f~e � n̂L;i)�¡ f~e� � n̂L;i)(�iL) gL(�pi)
(8.18)

where f~e � n̂S;i(�i
S) denotes the trace value of the normal flux in element 
e and (f~e �

n̂i)
�(�i

S) denotes the numerical flux. We will use Rusanov's numerical flux [152] which
for the face (S; i) is given by

(f~e � n̂S;i)
�=f~�(uS;i

¡ ;uS;i
+ ; n̂S;i)=

1
2
[(f~� � n̂S;i)

++(f~� � n̂S;i)
¡]¡ �S;i

2
(uS;i

+ ¡uS;i¡ ) (8.19)

The (f~� �nS;i)
� and uS;i

� denote the trace values of the normal flux and solution from
outer, inner directions respectively; the inner direction corresponds to the element 
e
while the outer direction corresponds to its neighbour across the interface (S; i). The
�S;i is a local wave speed estimate at the interface (S; i). For compressbile Euler's
equations (2.13), the wave speed is estimated as [141]

�=max (jv¡j; jv+j)+max (jc¡j; jc+j); v�=v �n�; c�= 
 p�/��
p

(8.20)

where n is the physical unit normal at the interface. The FR correction functions gL; gR
in the degree N +1 polynomial space PN+1 are a crucial ingredient of the FR scheme
and have the property

gL(¡1)= gR(1)= 1; gL(1)= gR(¡1)=0
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Reference [94] gives a discussion on how the choice of correction functions leads to
equivalence between FR and variants of DG scheme. In this work, the correction
functions known as g2 or gHU from [94] are used since along with Gauss-Legendre-
Lobatto (GLL) solution points, they lead to an FR scheme which is equivalent to a
DG scheme using the same GLL solution and quadrature points (Appendix B). Once
the continuous flux approximation is obtained, the FR scheme is given by

due;p
�

dt
+

1
Je;p
r� � f~e(�p)=0; 8p (8.21)

where Je;p is the Jacobian of the transformation at solution points xe;p. The FR scheme
is explicitly written as

due;p
�

dt
+

1
Je;p
r� � f~e�(�)

+
1
Je;p

X
i=1

d

((f~e � n̂R;i)�¡ f~e� � n̂R;i)(�iR) gR0 (�pi)

¡ 1
Je;p

X
i=1

d

((f~e � n̂L;i)�¡ f~e� � n̂L;i)(�iL) gL0 (�pi)=0

(8.22)

8.3.2. Lax-Wendroff Flux Reconstruction (LWFR)

The LWFR scheme is obtained by following the Lax-Wendroff procedure for Cartesian
domains [208, 18] (Chapter 4) on the transformed equation (8.12). With un denoting
the solution at time level t= tn, the solution at the next time level can be written using
Taylor expansion in time as

un+1=un+
X
k=1

N+1
�tk

k!
@t
(k)un+O(�tN+2)

where N is the solution polynomial degree. Then, use ut=¡ 1

J
r� � f~ (8.12) to swap a

temporal derivative with a spatial derivative and retain terms up to O(�tN+1)

un+1=un¡ 1
J

X
k=1

N+1
�tk

k!
@t
(k¡1) (r� � f~)

Shifting indices and writing in a conservative form

un+1=un¡ �t
J
r� �F~ (8.23)

where F~ is a time averaged approximation of the contravaraint flux f~ given by

F~ =
X
k=0

N
�tk

(k+1)!
@t
kf~� 1

�t

Z
tn

tn+1

f~dt (8.24)
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We first construct an element local order N + 1 approximation F~e
� to F~ using the

Approximate Lax-Wendroff procedure described in Section 8.3.3 to get

F~e
�(�)=

X
p

F~e;p `p(�)

The F~e� will be, in general, discontinuous across the element interfaces. Then, we
construct the continuous time averaged flux approximation by performing a correction
along each direction i, analogous to the case of FR (8.18), leading to

(F~e(�))i = (F~e
�(�))i + ((F~e � n̂R;i)�¡F~e� � n̂R;i)(�iR) gR(�pi)

¡ ((F~e � n̂L;i)�¡F~e� � n̂L;i)(�iL) gL(�pi)
(8.25)

where, as in (8.19), the numerical flux (F~e � n̂S;i)
� is an approximation to the time

average flux and is computed by a Rusanov-type approximation,

(F~e � n̂S;i)
�=

1
2
[(F~� � n̂S;i)

++(F~� � n̂S;i)
¡]¡ �S;i

2
(US;i

+ ¡US;i
¡ ) (8.26)

and U is the approximation of time average solution given by

U =
X
k=0

N
�tk

(k+1)!
@t
ku� 1

�t

Z
tn

tn+1

u dt (8.27)

The computation of dissipative part of (8.26) using the time averaged solution instead
of the solution at time tn was introduced in Section 4.3 and was termed D2 dissipation.
It is a natural choice in approximating the time averaged numerical flux and does
not add any significant computational cost because the temporal derivatives of u
are already available when computing the local approximation F~�. The choice of D2
dissipation reduces to an upwind scheme in case of constant advection equation and
leads to enhanced Fourier CFL stability limit (Section 4.4).

The Lax-Wendroff update is performed following (8.21) for (8.23)

ue;p
n+1=ue;p

n ¡ �t
Je;p
r� �F~e(�p)

which can be explicitly written as

ue;p
n+1=ue;p

n ¡ �t
Je;p
r� �F~e�(�p)

¡ �t
Je;p

X
i=1

d

((F~e � n̂R;i)�¡F~e� � n̂R;i)(�iR) gR0 (�pi)

+
�t
Je;p

X
i=1

d

((F~e � n̂L;i)�¡F~e� � n̂L;i)(�iL) gL0 (�pi)

(8.28)

By multiplying (8.28) by quadrature weights Je;pwp and summing over p, it is easy to
see that the scheme is conservative in the sense that

u�e
n+1=u�e

n¡ �t
j
ej

 X
i=1

d Z
@
o;i

R

(F~e � n̂R;i)�dS�+
Z
@
o;i

L

(F~e � n̂L;i)�dS�

!
(8.29)
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where the element mean value u�e is defined to be

u�e=
1
j
ej

X
p

ue;pJe;pwp (8.30)

We provide the proof of (8.29) for completeness. Multiply (8.28) with Je;pwp and sum
over p2NN

d to get, using the exactness of Gauss-Legendre-Lobatto (GLL) quadrature

u�e
n+1=u�e

n¡ �t
j
ej

Z

o

r� �F~e�(�) d�

¡ �t
j
ej

Z

o

X
i=1

d

((F~e � n̂R;i)�¡F~e� � n̂R;i)(�iR) gR0 (�pi) d�

+
�t
j
ej

Z

o

X
i=1

d

((F~e � n̂L;i)�¡F~e� � n̂L;i)(�iL) gL0 (�pi) d�

(8.31)

where �iS are as defined in (8.16). Then, note the following integral identities that are
an application of Fubini's theorem followed by fundamental theorem of CalculusZ


o

@�iF~e
�(�) d� =

Z
@
o;i

L

[F~e
� � n̂L;i]dS�+

Z
@
o;i

R

[F~e
� � n̂R;i]dS�Z


o

((F~e � n̂R;i)�¡F~e� � n̂R;i)(�iR) gR0 (�pi) d� =

Z
@
o;i

R

[(F~e � n̂R;i)�¡F~e� � n̂R;i]dS�Z

o

((F~e � n̂L;i)�¡F~e� � n̂L;i)(�iL) gL0 (�pi)d� = ¡
Z
@
o;i

L

[(F~e � n̂L;i)�¡F~e� � n̂L;i]dS�

where @
o;is is as in Figure 8.1 and we used gL(¡1) = gR(1) = 1, gL(¡1) = gR(1) = 0.
Then substituting these identities into (8.31) gives us the conservative update of the
cell average (8.29).

8.3.3. Approximate Lax-Wendroff procedure

We now illustrate how to approximate the time average flux at the solution points
F~e;p which is required to construct the element local approximation F~e�(�) using the
approximate Lax-Wendroff procedure [208]. For N = 1, (8.24) requires @t f~ which is
approximated as

@tf~
�(�p)=

f~(up+�t (ut)p)¡ f~(up¡�t (ut)p)
2�t

(8.32)

where element index e is suppressed as all these operations are local to each element.
The time index is also suppressed as all quantities are used from time level tn. The ut

above is approximated using (8.12)

(ut)p=¡
1
Jp
r� � f~�(�p) (8.33)
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where f~� is the cell local approximation to the flux f~ given in (8.17). For N =2, (8.24)
additionally requires @ttf~

@ttf~�(�p)

=
1
�t2

�
f~
�
up+�t(ut)p+

�t
2
(utt)p

�
¡ 2 f~(up)+ f~

�
up¡�t(ut)p+

�t
2
(utt)p

��
where the element index e is again suppressed. We approximate utt as

(utt)p=¡
1
Jp
r� � @tf~�(�p) (8.34)

The procedure for other degrees will be similar and the derivatives r� are computed
using a differentiation matrix. The implementation is made efficient by accounting
for cancellations of �t terms, which will be the same as in Section 4.2.4 for Cartesian
meshes.

8.3.4. Free stream preservation for LWFR

If the solution of the conservation law (8.1) is spatially constant at a time level, then
its evolution at later time levels remains constant8.1. This is the free stream property
and it is crucial for the numerical scheme to satisfy it in order to avoid very large
errors [105]. In this section, we discuss the conditions under which the LWFR scheme
is free stream preserving.

The free stream preservation of a conservation law is equivalent to the metric
identity (8.14). The divergence in a Flux Reconstruction (FR) scheme (8.22) is com-
puted as the derivative of a polynomial. Thus, denoting @�i

h as a polynomial derivative,
which is computed using a differentiation matrix (3.5), the following discrete metric
identity (8.14) is at least required for our scheme to preserve a constant state

X
i=1

d

@�i
h (Jai)=

X
i=1

d

@�i IN(Ja
i)=0 (8.35)

where IN is the degree N interpolation operator defined as

IN(f)(�)=
X
p

`p(�) f(�p) (8.36)

The study of free-stream preservation for Discontinuous Galerkin (DG) methods was
made in [105] showing that satisfying (8.35) gives free stream preservation. However,
it was also shown that the identities impose additional constraints on the degree of the
reference map �. The remedy given in (8.35) is to replace the metric terms Jai by a
different degree N approximation IN(Jai) so that (8.35) reduces to

X
i=1

d

@�i
h IN(Jai)=

X
i=1

d

@�i ININ(Jai)=
X
i=1

d

@�i IN(Jai)=0 (8.37)

8.1. This assumes that boundary conditions are either specified by the same constant, or are periodic.
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In [105], choices of IN like the conservative curl form were proposed which ensured (8.37)
without any additional constraints on the degree of the reference map �. Those choices
are only relevant in 3-D as, in 2-D, they are equivalent to interpolating � to a degree
N polynomial before computing the metric terms which is the choice of IN we make
in this work by defining the reference map as in (8.4).

In this section, we show that the identities (8.35) are actually enough to ensure free
stream preservation for LWFR. Throughout this section, we assume that the mesh is
well-constructed [105] which is a property that follows from the natural assumption of
global continuity of the reference map.

Definition 8.4. Consider a mesh where element faces in reference element 
o are
denoted as f@
o;iS g for coordinate directions 1� i�d and S=L/R chosen so that the
corresponding reference normals fn̂S;ig are n̂R;i= ei and n̂L;i=¡n̂R;i where feigi=1d

is the Cartesian basis, see Figure 8.1. The mesh is said to be well-constructed if the
following is satisfied

X
m=1

d

(IN(Jam)+¡IN(Jam)¡) (n̂S;i)m=0; 81� i� d; S=L;R (8.38)

where � are used to denote trace values from 
o or from the neighbouring element
respectively.

Remark 8.5. From (8.9), the identity (8.38) can be seen as a property of continuity of
the tangential derivatives of the reference map at the faces and is thus obtained if the
reference map is globally continuous. Also, since the unit normal vector of an element
at interface i is given by Jai/jJaij, (8.38) also gives us continuity of the unit normal
across interfaces.

Assuming the current solution is constant in space, un=c, we will begin by proving
that the approximate time averaged flux and solution satisfy

F~�= f~�(c); U =u�= c (8.39)

For the constant physical flux f(c), the contravariant flux f~ will be

f~i=IN(Jai) � f(c)=
X
n=1

d

IN(J ani )fn(c) (8.40)

Note that the contravariant flux (8.40) is not constant as the metric terms spatially
vary for curvilinear grids. However, using (8.33), we obtain at each solution point

ut = ¡1
J
r� � f~�=¡

1
J

X
i=1

d

@�i(f~
�)i

= ¡1
J

X
i=1

d

@�i (IN(Jai) � f(c))=¡
1
J

 X
i=1

d

@�iIN(Jai)

!
� f(c)

= 0
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where the last equality follows from using the metric identity (8.35). For polynomial
degree N =1, recalling (8.32), this proves that

@tf~�=
f~(u+�tut)¡ f~(u¡�tut)

2�t
=0

Thus, we obtain

F~�= f~�+
�t
2
@tf~�= f~�; U =u�+

�t
2
@tu�=u�

Building on this, for N =2, by (8.34),

utt=¡
1
J
r� � @tf~�=0

which will prove @ttf~�=0 and we similarly obtain the following for all degrees

F~� =
X
k=0

N
�tk

(k+1)!
@t
kf~�= f~�= fJai � f(c)gi=1d (8.41)

U =
X
k=0

N
�tk

(k+1)!
@t
ku�=u�= c (8.42)

To prove free stream preservation, we argue that the update (8.28) vanishes as the
volume terms involving divergence of F~� and the surface terms involving trace values
and numerical flux vanish. By (8.41), the volume terms in (8.28) are given by

1
J
�t

 X
i=1

d

@�iIN(Jai)

!
� f(c)

and vanish by the metric identity (8.37). By (8.42), the dissipative part of the numerical
flux (8.26) is computed with the constant solution un=c and will thus vanish. For the
central part of the numerical flux, as the mesh is well-constructed (Definition 8.4), the
trace values are given by

(F~� � n̂S;i)
+ =

X
m=1

d

(IN(Jam) � f(c))+(n̂S;i)m=
X
m=1

d

(IN(Jam) � f(c))¡(n̂S;i)m

= (F~� � n̂S;i)
¡

Overall, the numerical flux (8.26) satisfies

(F~e � n̂S;i)
�=(F~� � n̂S;i)

+=(F~� � n̂S;i)
¡

That is, the numerical flux agrees with the physical flux at element interfaces, ensuring
that the surface terms in (8.28) vanish.

8.4. Shock capturing and admissibility preservation

As is the case for problems involving Cartesian grids (Chapters 4-7), most practical
problems involving hyperbolic conservation laws on curvilinear grids consist of non-
smooth solutions containing shocks and other discontinuities. Thus, we develop the
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blending scheme from Section 5.3.1 for curvilinear grids. In order to be compatible with
Trixi.jl [141] and make use of this excellent code, we introduce LWFR with blending
scheme for Gauss-Legendre-Lobatto solution points, which are also used in Trixi.jl.
As in Chapter 5, the blending scheme has to be constructed to be provably admissibility
preserving (Definition 5.1), which is obtained by the weaker admissibility preservation
in means (Definition 5.2) property using the scaling limiter ([205], Appendix F).

As in Section 5.3.1, we will subdivide each element into subcells (Figure 8.2) and
perform a first order finite volume evolution on the subcells which will be blended with
the high order scheme LWFR scheme using a smoothness indicator as in (5.6). We
begin by discussing how to construct the low order scheme on the curved element and
subcells.

8.4.1. Low order scheme for curvilinear grids

ξ(2,2)

ξ
0

Θe(ξ̂
1, ξ̂2)

xe,0

xe,(2,2)

Figure 8.2. Subcells in a curved FR element

The subcells for a curved element will be defined by the reference map, as shown
in Figure 8.2. As in Appendix B.3 of [90], the finite volume formulation on subcells is
obtained by an integral formulation of the transformed conservation law (8.12). In the
reference element, consider subcells Cp of size wp=

Q
i=1

d
wpi associated to the solution

point (�pi)i=1
d corresponding to the multi-index p=(pi)i=1d , where pi2f0;1 :: : ;N g. Fix

a subcell C =Cp around the solution point �= (�pi)i=1
d and denote �i

L/R as in (8.16).
Integrate the conservation law on the fixed subcell CZ

C

JutdV +

Z
C

r� � f~dV =0

Next, perform one point quadrature in the first term and apply the Gauss divergence
theorem on the second term to get

Je;p
dup
dt

wp+

Z
@C

f~ � n̂dA=0 (8.43)

where n̂ is the reference normal vector on the subcell surface. Now evaluate this surface
integral by approximating fluxes in each direction with numerical fluxesZ
@C

f~� n̂dA=
X
i=1

d
wp
wpi

[(f~C
� �n̂R;i)�(�iR)+(f~C� �n̂L;i)�(�iL)]; n̂R;i=ei; n̂L;i=¡ei (8.44)
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The explicit lower order method using forward Euler update is thus given by

up
n+1=up

n¡ �t
Je;p

X
i=1

d
1
wpi

[(f~Cp
� � n̂R;i)�(�iR)+ (f~Cp

� � n̂L;i)�(�iL)] (8.45)

For the subcells whose interfaces are not shared by the FR element, the fluxes are
computed, following [90], as

(f~Cp
� � n̂R;i)�(�iR)= k(nR;i)pk f�

�
up;upi+;

(nR;i)p
k(nR;i)pk

�
(f~Cp

� � n̂L;i)�(�iL)= k(nL;i)pk f�
�
upi¡;up;

(nL;i)p
k(nL;i)pk

�
(pi�)m=

�
pm m=/ i
pi�1 m= i

(8.46)

where (nS;i)p is the normal vector of subcell Cp in direction i and side S2fL;Rg. The
numerical fluxes (8.46) are taken to be Rusanov's flux (8.19)

f~�(u¡;u+;n)=
1
2
[(f �n)(u+)+ (f �n)(u¡)]¡ �

2
(u+¡u¡) (8.47)

where � is the wave speed estimate at the subcell face computed using u� (8.20). At
the interfaces shared by FR elements, the first order numerical flux is computed by
setting u� in (8.47) to element trace values as in (8.19). However, the lower order
residual needs to be computed using the same inter-element flux as the higher order
scheme at interfaces of the Flux Reconstruction (FR) elements. Thus, for example, for
an element 
e at solution point �= �p with p=0, the subcell update will be given by

ue;0
n+1=ue;0

n ¡ �t
Je;p

X
i=1

d
1
wpi

[(f~C0
� � n̂R;i)�(�iR)+ (F~e

� � n̂L;i)�(�iL)] (8.48)

where (F~e� � n̂i)
�(�i

L) is the blended numerical flux and is computed by taking a convex
combination of the lower order flux chosen as in (8.19) and the time averaged flux
from LWFR scheme (8.26). An initial guess is made as in 1-D (5.11) and then fur-
ther correction is performed to ensure admissibility, as explained in Section 8.4.3.2.
Other subcells neighbouring the element interfaces will also use the blended numerical
fluxes at the element interfaces and thus have an update similar to (8.48). Then, by
multiplying each update equation of each subcell p by wp and summing over p, the
conservation property is obtained

u�e
L;n+1=

X
p

ue;p
L;n+1wp=u�e

n¡ �t
j
ej

 X
i=1

d Z
@
o;i

R

(F~e
� � n̂R;i)�dS�+

Z
@
o;i

L

(F~e
� � n̂L;i)�dS�

!
(8.49)

Since we also have the conservation property in the higher order scheme (8.29), the
blended scheme will be conservative, analogous to the 1-D case (5.9, 5.10).
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The expressions for normal vectors on the subcells needed to compute (8.46) are
taken from Appendix B.4 of [90] where they were derived by equating the high order
flux difference and Discontinuous Galerkin split form. We directly state the normal
vectors here, denoting (nR;i)p as the outward normal direction in subcell Cp along the
positive i direction

(nR;i)p=IN(Jai)pij0+
X
l=0

pi

wl @�iIN(Jai)pijl; (pijl)m=

�
pm m=/ i
pl m= i

where fwlgl=0N are quadrature weights corresponding to solution points, IN is the
approximation operator for metric terms (8.37), and (nL;i)p can be obtained by the
relation (nL;i)p=¡(nR;i)pi¡, where pi¡ was defined in (8.46).

Free-stream preservation. To show the free stream preservation of the lower order
scheme with the chosen normal vectors, we consider a constant initial state u=c and
show that the finite volume residual will be zero. A constant state implies that the time
average of the contravariant flux will be the contravariant flux itself (8.39). Thus, all
numerical fluxes including element interface fluxes are first order fluxes like in (8.46)
and the residual at p in direction i is given by

f(c)
wpi

� ((nR;i)p+(nL;i)p)

=
f(c)
wpi

� (IN(Jai)pij0+
X
l=0

pi

wl @�iIN(Jai)pijl¡IN(Jai)pij0¡
X
l=0

pi¡1

wl @�iIN(Jai)pijl)

= f(c) � @�iIN(Jai)p

The residuals in other directions give similar terms and summing them gives

f(c) �
X
i=1

d
@
@ �i
IN(Jai)p=0

by the metric identities, thus satisfying the free stream preservation condition.

8.4.2. Smoothness indicator
As in Section 5.3.2, we measure the smoothness of degree N approximate solution
within each element and in terms of the orthonormal Legendre basis and analyze
the decay of its coefficients. In this section, we write the smoothness indicator for d
dimensions, using the multi-index notation (8.5).

Let q = q(u) be the quantity used to measure the solution smoothness. With
fLjgj=0N being the 1-D Legendre polynomial basis of degree N , taking tensor pro-
duct gives the degree N Legendre basis

Lp(�)=
Y
i=1

d

Lpi(�
i); pi2f0; 1; : : : ; N g

The Legendre basis representation of q can be obtained as

qh(�)=
X
p

q̂pLp(�); � 2
o; q̂p=

Z

o

q(u�(�))Lp(�) d�
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The Legendre coefficients f q̂pg are computed using the quadrature induced by the
solution points,

q̂p=
X
q

q(ue;q)Lp(�q)wq

Define
SK=

X
p;pi�K

q̂p
2

which measures the �energy� in qh. Then the energy contained in the highest modes
relative to the total energy of the polynomial is computed as follows

E=max
�
SN ¡SN¡1

SN
;
SN¡1¡SN¡2

SN¡1

�
In 1-D, this simplifies into the expression of (5.12) and the remaining steps to obtain
the blending coefficient �e2 [0; 1] are the same as in Section 5.3.2.

8.4.3. Flux limiter for admissibility preservation
We first briefly review the flux limiting process for admissibility preservation from
Chapter 5 for 1-D and then do a natural extension to curvilinear meshes. The first
step in obtaining an admissibility preserving blending scheme is to ensure that the
lower order scheme preserves the admissibility set Uad. This is always true if all the
fluxes in the lower order method are computed with an admissibility preserving low
order finite volume method. But the LWFR scheme uses a time average numerical
flux and maintaining conservation requires that we use the same numerical flux at
the element interfaces for both lower and higher order schemes (Remark 1 of [19]).
To maintain accuracy and admissibility, we carefully choose a blended numerical flux
Fe+ 1

2

as in (5.11) but this choice may not ensure admissibility and further limitation is

required. Our proposed procedure for choosing the blended numerical flux will give us
an admissibility preserving lower order scheme. As a result of using the same numerical
flux at element interfaces in both high and low order schemes, element means of both
schemes are the same (Theorem 8.6). A consequence of this is that our scheme now
preserves admissibility of element means and thus we can use the scaling limiter of [205]
to get admissibility at all solution points.

Once the low order scheme on subcells is constructed as in Section 8.4.1, the
blending scheme with smoothness coefficient can be written as (5.6). The theoret-
ical basis for flux limiting summarized in Theorem 5.5 also applies. For clarity, we
rewrite Theorem 5.5 in the notation of general curvilinear specialized to first order
blending in Theorem 8.6.

Theorem 8.6. Consider the LWFR blending scheme on curved meshes where low
and high order schemes use the same numerical flux (F~e

� � n̂i)
�(�i

s) at every element
interface and the lower order residual is computed using the first order finite volume
scheme (8.45). Then the following can be said about admissibility preserving in means
property (Definition 5.2) of the scheme:

1. element means of both low and high order schemes are same, and thus the
blended scheme is admissibility preserving in means if and only if the lower order
scheme is admissibility preserving in means;
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2. if the blended numerical flux (F~e� � n̂i)
�(�i

s) is chosen to preserve the admissibility
of lower-order updates at solution points adjacent to the interfaces, then the
blending scheme will preserve admissibility in means.

Proof. By (8.29, 8.49), element means are the same for both low and high order
schemes. Thus, admissibility in means of one implies the same for the other, proving
the first claim. For the second claim, note that our assumptions imply ue;p

L;n+1 given
by (8.45, 8.48) are in Uad for all p. Therefore, we obtain admissibility in means property
of the lower order scheme by (8.49) and thus admissibility in means for the blended
scheme. �

8.4.3.1. Flux limiter for admissibility preservation in 1-D

To make the general case of curved meshes easier to understand, we keep the 1-D Flux
limiter in Section 5.5 in a self-contained version in Algorithm 8.1. For simplicity, we
only consider the case where the admissibility constraints Pk (5.1) are concave functions
of the conservative variables.
Algorithm 8.1

Computation of blended flux Fe+ 1

2

Input: F
e+
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2

LW; fe+ 1

2

; f1
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2
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2
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2
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�

0
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2
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for k=1:K do
BCorrect Fe+ 1

2

for K admissibility constraints

�0; �N 1

10 Pk(u
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0
low;n+1);

1

10 Pk(u
�

N
low;n+1)

� min
�
minj=0;N
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2

+(1¡ �) fe+ 1

2

BFV inner updates with Fe+ 1

2
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e )

end
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8.4.3.2. Flux limiter for admissibility preservation on curved meshes

Consider the calculation of the blended numerical flux for a corner solution point of
the element, see Figure 8.2. A corner solution point is adjacent to interfaces in all
d directions, making its admissibility preservation procedure different from 1-D. In
particular, let us consider the corner solution point p=0 and show how we can apply
the 1-D procedure in Section 8.4.3.1 to ensure admissibility at such points. The same
procedure applies to other corner and non-corner points. The lower order update at
the corner is given by (8.48)

u
�

e;0
n+1 = ue;0

n ¡ �t
Je;p

X
i=1

d
1
wpi

[(f~C0
� � n̂R;i)�(�iR)+ (F

�

e
� � n̂L;i)�(�iL)] (8.50)

where n̂i= ei is the reference normal vector on the subcell interface in direction i,
(f~C0

� � n̂R;i)� denotes the lower order flux (8.44) at the subcell C0 surrounding �0,
(F

�

e
� � n̂L;i)�(�iL) is the initial guess candidate for the blended numerical flux. Pick ki>0

such that
P

i=1

d
ki=1 and

u
�

i
low;n+1 :=ue;0

n ¡ �t
kiwpiJe;p

[(f~C0
� � n̂R;i)�(�iR)+ (f~ � n̂L;i)�(�iL)]; 1� i� d (8.51)

satisfy

u
�

i
low;n+12Uad; 1� i� d (8.52)

where (f~ � n̂i)
�(�i

L) is the first order finite volume flux computed at the FR element
interface.

The fkig that ensure (8.52) will exist provided the appropriate CFL restrictions are
satisfied because the lower order scheme using the first order numerical flux at element
interfaces is admissibility preserving. The choice of fkig should be made so that (8.52)
is satisfied with the least time step restriction. However, we make the trivial choice of
equal ki's motivated by the experience of Chapter 5, where it was found that even this
choice does not impose any additional time step constraints over the Fourier stability
limit. After choosing ki's, we have reduced the update to 1-D and can repeat the same
procedure as in Algorithm 8.1 where for all directions i, the neighbouring element
is chosen along the normal direction. After the flux limiting is performed following
Algorithm 8.1, we obtain (F

�

e
� � n̂L;i)�(�iL) such that

u
�

i
n+1 :=ue;0

n ¡ �t
kiwpiJe;p

[(f~C0
� � n̂R;i)�(�iR)+ (F

�
� � n̂L;i)�(�iL)]2Uad (8.53)

Then, we will get X
i=1

d

kiu
�

i
n+1=u

�

e;0
n+12Uad (8.54)
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along with admissibility of all other corner and non-corner solution points where the
flux (F

�
� � n̂i)

�(�i
R) is used. Finally, by Theorem 8.6, admissibility in means (Def-

inition 8.30) is obtained and the scaling limiter of [205] can be used to obtain an
admissibility preserving scheme (Definition 5.1).

8.5. Adaptive mesh refinement

Adaptive mesh refinement helps resolve flows where the relevant features are localized
to certain regions of the physical domain by increasing the mesh resolution in those
regions and coarsening in the rest of the domain. In this work, we allow the adaptively
refined meshes to be non-conforming, i.e., element neighbours need not have coinciding
solution points at the interfaces (Figure 8.3a). We handle the non-conformality using
the mortar element method first introduced for hyperbolic PDEs in [106].

In order to perform the transfer of solution during coarsening and refinement, we
introduce some notations and operators. Define the 1-D reference elements

I0= [¡1; 0]; I1= [0; 1]; I = [¡1; 1]; N1
d= f0; 1gd (8.55)

and the bijections �s: Is! I for s=0; 1 as

�0(�)= 2 �+1; � 2 I0; �1(�)= 2 �¡ 1; � 2 I1 (8.56)

so that the inverse maps �s
¡1: I! Is are given by

�0
¡1(�)=

�¡ 1
2

; � 2 I ; �1
¡1(�)=

�+1
2

; � 2 I (8.57)

Denoting the 1-D solution points and Lagrange basis for I as f�pgp=0N and f`p(�)gp=0N

respectively, the same for Is are given by f�s¡1(�p)gp=0N and f`p(�s(�))gp=0N respectively.
We also define

R
¡ to be integration under quadrature at solution points. Thus,Z

¡
I

u(�)d�=
X
p=0

N

u(�p)wp;

Z
¡
Is

u(�)d�=
X
p=0

N

2u(�s
¡1(�p))wp

In order to get the solution point values of the refined elements, we will perform inter-
polation. All integrals in this section are approximated by quadrature at solution points
which are the degree N Gauss-Legendre-Lobatto points. The interpolation operator
from I to fIsgs=0;1 is given by V�s defined as the Vandermonde matrix corresponding
to the Lagrange basis

(Vs)pq= `q(�s
¡1(�p)); 0� p; q�N; s=0; 1 (8.58)

For the process of coarsening, we also define the L2 projection operators fPsgs=0;1
which projects a polynomial u defined on the Lagrange basis of Is to the Lagrange
basis of I as Z

¡
I

Ps(u)(�) `i(�) d�=
Z
¡
Is

u(�) `i(�) d�; 0� i�N
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Figure 8.3. (a) Neighbouring elements with hanging nodes (b) Illustration of refinement and
coarsening

Approximating the integrals by quadrature on solution points, we obtain the matrix
representations corresponding to the basis

Ppqs =
1
2
wq
wp

`p(�s
¡1(�q)); 0� i; j �N; s=0; 1 (8.59)

where fwpgp=0N are the quadrature weights corresponding to solution points. The
transfer of solution during coarsening and refinement is performed by matrix-vector
operations using the operators (8.58, 8.59). Thus, the operators (8.58, 8.59) are stored
as matrices for the reference element at the beginning of the simulation and reused
for the adaptation operations in all elements. Lastly, we introduce the notation of
a product of matrix operators fAigi=1d acting on b=(bp)p2NNd =(bp1p2p3)p2NNd as

(Ai b)p=
X
q2NNd

 Y
i=1

d

(Ai)piqi

!
bq (8.60)

8.5.1. Solution transfer between element and subelements
Corresponding to the element 
e, we denote the 2d subdivisions as (Figure 8.3b)


es=�e

 Y
i=1

d

Isi

!
; 8s2N1

d
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where Is are defined in (8.55). We also define �s(�)=(�si(�
i))i=1

d so that �s is a bijection
between 
es and 
e in reference coordinates8.2. Recall that f`pgp2NNd are Lagrange
polynomials of degree N with variables �=(�i)i=1d . Thus, the reference solution points
and Lagrange basis for 
es are given by f�s¡1(�p)gp2NNd and f`p(�s(�))gp2NNd , respec-
tively. The respective representations of solution approximations in 
e;
es in reference
coordinates are thus given by

ue(�)=
X
q2NNd

`q(�)ue;q; ues(�)=
X
q2NNd

`q(�s(�))ues;q (8.61)

8.5.1.1. Interpolation for refinement

After refining an element 
e into child elements f
esgs2N1
d, the solution ue has to be

interpolated on the solution points of child elements to obtain fuesgs2N1
d. The scheme

will be specified by writing ues;q in terms of ue;q, which were defined in (8.61). The
interpolation is performed as

ues;p =
X
q2NNd

`q(�s
¡1(�p))ue;q=

X
q2NNd

 Y
i=1

d

`qi(�si
¡1(�pi))

!
ue;q

=
X
q2NNd

 Y
i=1

d

(V�si)piqi

!
ue;q

In the product of operators notation (8.60), the interpolation can be written as

ues=

 Y
i=1

d

V�si

!
ue

8.5.1.2. Projection for coarsening

When 2d elements are joined into one single bigger element 
e, the solution transfer is
performed using L2 projection of fuesgs2N1

d into ue, which is given byX
s2N1

d

Z
¡

es

ues`p(�)dx=
Z
¡

e

ue`p(�)dx; 8p2NN
d (8.62)

Substituting (8.61) into (8.62) givesX
s2N1

d

X
q2NNd

Z
¡

es

`p(�) `q(�s(�))ues;qdx=
X
q2NNd

Z
¡

e

`p(�) `q(�)ue;qdx (8.63)

Note the 1-D identitiesZ
¡
I

`p(�) `q(�)d�=�pqwpZ
¡
Is

`p(�) `q(�s(�))d�=
1
2

Z
¡
¡1

+1

`p(�s
¡1(�)) `q(�)d�=

1
2
`p(�s

¡1(�q))wq=Ppqs wp

8.2. That is, �e�s�e
¡1 is a bijection from 
es to 
e.
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Figure 8.4. (a) Prolongation to mortar and computation of numerical flux F�1;F�2, (b) Projection
of numerical flux to interfaces.

where the projection operator fPsgs=0;1 is defined in (8.59). Then, by change of vari-
ables, we have the followingZ
¡

e

`p(�) `q(�)= Je;p
Y
i=1

d

wpi �piqi;

Z
¡

es

`p(�) `q(�s(�))= Je;p
Y
i=1

d

wpiPpiqi
si (8.64)

Using (8.64) in (8.63) and dividing both sides by Je;p gives

ue;p=
X
s2N1

d

X
q2NNd

 Y
i=1

d

Ppiqi
si

!
ues;q=

X
s2N1

d

 Y
i=1

d

Psi
!
ues

where the last equation follows using the product of operators notation (8.60).

8.5.2. Mortar element method (MEM)
8.5.2.1. Motivation and notation
When the mesh is adaptively refined, there will be elements with different refinement
levels sharing a face; in this work, we assume that the refinement levels of those
elements only differ by 2 (Figure 8.3a). Since the neighbouring elements do not have
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a common face, the solution points on their faces do not coincide (Figure 8.4). We
will use the Mortar Element Method (MEM) for computing the numerical flux at all
the required points on such a face, while preserving accuracy and the conservation
property (8.29). There are two steps to the method.

1. Prolong F~� � n̂S;i;US;i;uS;i (8.26) from the neighbouring elements to a set of
common solution points known as mortar solution points (Figure 8.4a).

2. Compute the numerical flux at the mortar solution points as in (8.26) and map
it back to the interfaces (Figure 8.4b).

In Sections 8.5.2.2, 8.5.2.3, we will explain these two steps through the specific case of
Figure 8.4 and we first introduce notations for the same.

Consider the multi-indices s2N1
d¡1=f0;1gd¡1 and the interface in right (positive)

i=1 direction of element 
e, denoted as ¡ (Figure 8.4). We assume that the elements
neighbouring 
e at the interface ¡ are finer and thus we have non-conforming subin-
terfaces f¡sgs2N1

d¡1 which, by continuity of the reference map, can be written as ¡s=

�e(f1g�
Q

i=1

d¡1
Isi)=�e(f1g� �s¡1(Id¡1)). Thus, in reference coordinates, �s (8.56) is a

bijection from ¡s to ¡. The interface ¡ can be parametrized as y= 
(�)=�e(1; �) for
�2 Id¡1 and thus the reference variable of interface is denoted �= 
¡1(y). The subin-
terfaces can also be written by using the same parametrization so that ¡s=f
(�): �2Q

i=1

d¡1
Isig. For the reference solution points on ¡ being f�sgs2N1

d¡1, the solution points
in ¡s are respectively given by f�s¡1(�p)gp2N1d¡1 and for f`p(�)gp2NNd¡1 being Lagrange
polynomials in ¡, the Lagrange polynomials in ¡s are given by f`p(�s(�))gp2N1

d¡1

respectively. Since the solution points between ¡ and ¡s do not coincide, they will
be mapped to common solution points in the mortars �s and then back to ¡;¡s after
computing the common numerical flux. The solution points in �s are actually given
by f�s¡1(�p)gp2N1d¡1, i.e., they are the same as ¡s. The quantities with subscripts �s

¡;

�s
+ will denote trace values from larger, smaller elements respectively.

8.5.2.2. Prolongation to mortars

We will explain the prolongation procedure for a quantity F which could be the normal
flux F~� � n̂S;i, time average solution US;i or the solution uS;i. The first step of MEM
of mapping of solution point values from solution points at element interfaces ¡; ¡s
to solution points at mortars �s

¡; �s
+ is known as prolongation. The prolongation

of fF¡s� gs2N1
d¡1 from small elements ¡s to mortar values fF�s+gs2N1

d¡1 is the identity
map since both have the same solution points, and the prolongation of F¡� from the
large interface ¡ to the fF�s

¡gs2N1
d¡1 is an interpolation to the mortar solution points.

Accuracy is maintained by the interpolation as the mortar elements are finer. Below,
we explain the matrix operations used to perform the interpolation.

The prolongation of fF¡s� gs2N1
d¡1 to the mortar values fF�s+gs2N1

d¡1 is the identity
map. The fF�s

¡gs2N1
d¡1 in Lagrange basis are given by

F�s¡(�)=
X

p2NN
d¡1

`p(�s(�))F�s¡;p; � 2
Y
i=1

d¡1

Isi (8.65)

174 Curvilinear grids



The coefficients fF�s;p
¡ gp2NNd¡1 are computed by interpolation

F�s¡;p=F¡¡(�s
¡1(�p)) =

X
q2NN

d¡1

`q(�s
¡1(�p))F¡

�(�q)

=
X

q2NN
d¡1

 Y
i=1

d¡1

`qi(�si
¡1(�pi))

!
F¡
�(�q)

=
X

q2NN
d¡1

 Y
i=1

d¡1

(Vsi)piqi

!
F¡
�(�q)

(8.66)

where the interpolation operators fV�sgs=0;1 were defined in (8.58). Using the product
of operators notation (8.60), we can compactly write (8.66) as

F�s¡=

 Y
i=1

d¡1

Vsi

!
F¡
� (8.67)

The same procedure is performed for obtaining U�s
�; u�s�. The numerical fluxes

fF�s� gs2N1
d¡1 are then computed as in (8.26).

8.5.2.3. Projection of numerical fluxes from mortars to faces

In this section, we use the notation F � :=(F~e � n̂S;i)
� to denote the numerical flux (8.26).

In the second step of MEM, the numerical fluxes fF�s� gs2N1
d¡1 computed using values

at f�s�gs2N1
d¡1 are mapped back to interfaces ¡s;¡. Since the solution points on ¡s are

the same as those of �s
�, the mapping from fF�s� gs2N1

d¡1 to fF¡s�gs2N1
d¡1 is the identity

map. In order to maintain the conservation property, an L2 projection is performed to
map all the fluxes fF�s� gs2N1

d¡1 into one numerical flux F¡� on the larger interface.

An L2 projection of these fluxes to F¡� on ¡ is performed asX
s2N1

d¡1

Z
¡
¡s

F�s
� `p=

Z
¡
¡

F¡
�`p; 8p2NN

d¡1 (8.68)

where integrals are computed with quadrature at solution points. As in (8.65), we write
the mortar fluxes as

F�s
� (�) =

X
q2N1

d¡1

`q(�s(�))F�s;q
� ; � 2�s

F¡
�(�) =

X
q2N1

d¡1

`q(�)F¡;q
� ; � 2¡

Thus, the integral identity (8.68) can be written asX
s2N1

d¡1

X
q2NN

d¡1

Z
¡
¡s

`p(�)`q(�s(�))F�s;q
� =

X
q2Np

d¡1

Z
¡
¡

`p(�)`q(�)F¡;q
� ; 8p2NN

d¡1 (8.69)

8.5 Adaptive mesh refinement 175



Using the identities (8.69), the equations (8.69) become

X
s2N1

d¡1

X
q2NN

d¡1

 Y
i=1

d¡1

wpiPpiqi
si

!
F�s;q
� Je;p

S =wpF¡;p
� Je;p

S

where Je;pS is the surface Jacobian, given by jj(Ja1)e;pjj in this case ((6.29) of [103]).
Then, dividing both sides by Je;pS wp gives

F¡;p
� =

X
s2N1

d¡1

X
q2NN

d¡1

 Y
i=1

d¡1

Ppiqi
si

!
F�s;q
� =

X
s2N1

d¡1

 Y
i=1

d¡1

Psi
!
F�s
� (8.70)

where the last identity is obtained by the product of operators notation (8.60). Note
that the identity (8.68) implies

X
s2N1

d¡1

Z
¡
¡s

F�s
� v=

Z
¡
¡

F¡
� v; v 2PN

Then, taking v=1 shows that the total fluxes over an interface ¡ are the same as over
f¡sgs2N1

d¡1 and thus the conservation property (8.29) of LWFR is maintained by the
LWFR scheme.

Remark 8.7. (Freestream and admissibility preservation under AMR)
Under the adaptively refined meshes, free stream preservation and provable admissi-
bility preservation are respectively ensured.

1. When refining/coarsening, there are two ways to compute the metric terms
- interpolate/project the metric terms directly or interpolate/project the ref-
erence map � at solution points and use the newly obtained reference map
to recompute the metric terms. The latter, which is the approach taken in
this work, can lead to violation of free stream preservation as we can have
(IN)eL(J ai) =/ (IN)eR(J ai) where 
eL and 
eS are two neighbouring large and
small elements respectively. Thus, the interface terms may not vanish in the
update equation (8.28) with constant un leading to a violation of free stream
preservation. This issue only occurs in 3-D and is thus beyond the scope of
this work, but some remedies are to interpolate/project the metric terms when
refining/coarsening or to use the reference map �2PN/2, as explained in [104].
Another solution has been studied in [109] where a common finite element space
with mixed degree N ¡ 1 and N is used with continuity at the non-conformal
interfaces. Since this work only deals with problems in 2-D, we always have
(IN)eL(J ai) = (IN)eR(J ai) ensuring that the interface terms in (8.28) vanish
when u= c. Further, since the metric terms are recomputed in this work, the
volume terms will vanish by the same arguments as in Section 8.3.4. Thus,
free stream preservation is maintained even with the non-conformal, adaptively
refined meshes.
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2. The flux limiting explained in Section 8.4.3 ensures admissibility in means (Def-
inition 5.2) and then uses the scaling limiter of [205] to enforce admissibility of
solution polynomial at all solution points to obtain an admissibility preserving
scheme (Definition 5.1). However, the procedure doesn't ensure that the poly-
nomial is admissible at points which are not the solution points. Adaptive mesh
refinement introduces such points into the numerical method and can thus cause
a failure of admissibility preservation in the following situations: (a) mortar
solution values fu�s

¡ g obtained by interpolation as in (8.65) are not admissible,
(b) mean values fu�esg of the solution values fuesg obtained by interpolating
from the larger element as in (8.5.1.1) are not admissible. Since the scaling
limiter [205] can be used to enforce admissibility of solution at any desired
points, the remedy to both issues is further scaling; we simply perform scaling
of solution point values fu�s

¡ g; fuesg with the admissible mean value u�e. This
will ensure that the mortar solution point values and the mean values fuesg are
admissible.

8.5.3. AMR indicators

The process of adaptively refining and coarsening the mesh requires a local solution
smoothness indicator. In this work, two smoothness indicators have been used for adap-
tive mesh refinement. The first is the indicator of [90], explained in Section 8.4.2. The
second is Löhner's smoothness indicator [120] which uses the central finite difference
formula for second derivative, which is given by

�e= max
p2NNd

max
1�i�d

jq(upi+)¡ 2 q(up)+ q(upi¡)j
Normalizer(i; p)

;

Normalizer(i; p)=

 
jq(upi+)¡ q(up)j+ jq(up)¡ q(upi¡)j

+fwave (jq(upi+)j+2jq(up)j+ jq(upi¡)j)

!
(pi�)m=

�
pm; m=/ i
pi�1; m= i

(8.71)

where fupgp2NNd are the degrees of freedom in element 
e and q is a derived quantity
like the product of density and pressure used in Section 8.4.2. The value fwave= 0.2
has been chosen in all the tests [120].

Once a smoothness indicator is chosen, the three level controller implemented
in Trixi.jl [140] is used to determine the local refinement level. The mesh begins
with an initial refinement level and the effective refinement level is prescribed by
how much further refinement has been done to the initial mesh, The mesh is cre-
ated with two thresholds med_threshold and max_threshold and three refinement
levels base_level, med_level and max_level. Then, we have

levele=

8>><>>:
base_level; �e� med_threshold
med_level; med_threshold��e� max_threshold
max_level; max_threshold��e
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Beyond these refinement levels, further refinement is performed to make sure that two
neighbouring elements only differ by a refinement level of 1.

8.6. Time stepping

This section introduces an embedded error approximation method to compute the time
step size �t for the single stage Lax-Wendroff Flux Reconstruction method. First,
recall that a standard way to compute the time step size �tn is to follow Chapter 4
and use

�tn=Csmin
e;p

jJe;pj
�(ue;p

n )
CFL(N) (8.72)

where the minimum is taken over all elements f
ege, Je is the Jacobian of the change of
variable map, �(uen) is the largest eigenvalue of the flux jacobian at state uen, approx-
imating the local wave speed, CFL(N) is the optimal CFL number dependent on
solution polynomial degree N and Cs� 1 is a safety factor. In Section 4.4, a Fourier
stability analysis of the LWFR scheme was performed on Cartesian grids, and the
optimal CFL numbers were obtained for each degree N (Table 4.1) which guaranteed
the stability of the scheme. However, the Fourier stability analysis does not apply to
curvilinear grids and formula (8.72) need not guarantee L2 stability with CFL numbers
from Table 4.1. Thus, formula (8.72) may require the CFL number to be fine-tuned
for each problem. Along with the L2 stability, the time step has to be chosen so
that the scheme does not give inadmissible solutions. An error-based time stepping
method inherently minimizes the parameter tuning process in time step computation.
The parameters in an error-based time stepping scheme that a user has to specify
are the absolute and relative error tolerances �a; �r, and they only affect the time
step size logarithmically. In particular, because of the weak dependence, tolerances
�a= �r= 10¡6 worked reasonably for all tests with shocks; although, it was possible to
enhance performance by choosing larger tolerances for some problems. Secondly, if
inadmissibility is detected during any step in the scheme or if errors are too large, the
time step is redone with a reduced time step size provided by the error estimate. The
scheme also has the capability of increasing and decreasing the time step size.

We begin by reviewing the error-based time stepping scheme for the Runge-Kutta
ODE solvers from [140, 142] in Section 8.6.1 and explain our extension of the same to
LWFR in Section 8.6.2.

8.6.1. Error estimation for Runge-Kutta schemes

Consider an explicit Runge-Kutta method used for solving ordinary differential equa-
tions by evolving the numerical solution from time level n to n+1. For error estimation,
the method is constructed to have an embedded lower order update ûn+1, as described
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in equation (3) of [140]. The difference in the two updates, un+1¡ ûn+1, gives an
indication of the time integration error, which is used to build a Proportional Integral
Derivative (PID) controller to compute the new time step size,

�te n+1=�("n+1
�1/k "n

�2/k "n¡1
�3/k)�tn (8.73)

where for q being the order of main method, q̂ being the order of embedded method,
we have

k=min (q; q̂)+ 1

and �i are called control parameters which are optimized for the particular Runge-
Kutta scheme [140]. With M being the number of degrees of freedom in u, we pick
absolute and relative tolerances �a; �r and then error approximation is made as

"n+1=
1

wn+1
; wn+1=

 
1
M

X
i=1

M �
ui
n+1¡ ûin+1

�a+ �rmax fjuin+1j; ju� jg

�
2
!1

2

(8.74)

where the sum is over all degrees of freedom, including solution points and conservative
variables. The tolerances are to be chosen by the user but their influence on the scheme
is logarithmic, unlike the CFL based scheme (8.72).

The limiting function �(x) = 1+ tan¡1(x¡ 1) is used to prevent sudden increases
in time step sizes. For normalization, PETSc uses u� = ûn+1 while OrdinaryDiffEq.jl
uses u� =un. Following [140], if the time step factor �te n+1/�tn� 0.92, the new time
step is accepted and used in the next level as �tn+1=�te n+1. If not, or if admissibility
is violated, evolution is redone with time step size �tn=�te n+1 computed from (8.73).

8.6.2. Error based time stepping for Lax-Wendroff flux reconstruc-
tion

Consider the LWFR scheme (8.28) with polynomial degree N and formal order of
accuracy N +1

ue;p
n+1=ue;p

n ¡ �t
Je;p
r� �F~e�(�p)¡Ce;p

where Ce;p contains contributions at element interfaces. In order to construct a lower
order embedded scheme without requiring additional inter-element communication,
consider an evolution where the interface correction terms Ce;p are not used, i.e., con-
sider the element local update

uloc;e;p
n+1 =ue;p

n ¡ �t
Je;p
r� �F~e�(�p) (8.75)
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Truncating the locally computed time averaged flux F~e� (8.24) at one order lower

Fe
�b =
X
k=0

N¡1
�tk

(k+1)!
@t
kf~e

� (8.76)

we can consider another update

uloc;e;p
n+1 =ue;p

n ¡ �t
Je;p
r� �Fe�b (�p) (8.77)

which is also locally computed but is one order of accuracy lower. We thus use ue
n+1=

uloc;e
n+1 and ûe

n+1=uloc;e
n+1d in the formula (8.74) along with u�= ûn+1; then we use the same

procedure of redoing the time step sizes as in Section 8.6.1. That is, after using the error
estimate (8.74) to compute �te n+1 (8.73) we redo the time step if �te n+1/�tn� 0.92 or
if admissibility is violated; otherwise we set �tn+1 to be used at the next time level.
The complete process is also detailed in Algorithm 8.4. In this work, we have used
the control parameters �1= 0.6; �2=¡0.2; �3= 0.0 for all numerical results which are
the same as those used in [140] for BS3(2)3F, the third-order, four-stage RK method
of [32]. We tried the other control parameters from [140] but found the present choice
to be either superior or only slightly different in performance, measured by the number
of iterations taken to reach the final time.
Algorithm 8.2

Overview of LWFR element residual of order N +1 & error approximation using uloc
n+1;uloc

n+1d
for e in eachelement(mesh) do

Compute f@tkf~e�gk=0N¡1 using approximate LW procedure (8.32) to obtain Fe�b (8.76)

Compute uloc;e
n+1d using Fe�b (8.77)

Compute @t
N+1 f~e

� using approximate LW procedure (8.32) to obtain F~e� (8.24)
Compute uloc;e

n+1 using F~e� as in (8.75)

temporal_error[e]=
X
i

0@ uloc;e;i
n+1 ¡uloc;e;i

n+1

�a+ �rmax
�
juloc;e;i

n+1 j;
����uloc;e;i

n+1
����	
1A2, sum is over dofs in e

Compute and add local contribution of F~e� to the residual (8.28)
end

Algorithm 8.3

High level overview of LWFR residual (Within time integration)
Compute f�eg (Section 8.4.2)
Assemble cell residual (Algorithm 8.2)
for ¡ in eachinterface(mesh) do

Compute F¡LW; f¡ and blend them into F¡ (Algorithm 8.1)
end
for e in eachelement(mesh) do

Add contribution of numerical fluxes to residual of element e (Remark 5.3b)
done
Update solution
Apply positivity limiter
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Algorithm 8.4

Lax-Wendroff Flux Reconstruction at a high level to explain error based time stepping
Initialize t 0, time step number n 0, and initial state u0

Initialize PID controller with "0 1; "¡1 1
Initialize �t0=�te with a user supplied value
Initialize accept_step  false
while t<T do666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666664

if accept_step then
accept_step  false
t t~

�tn+1 �te
n n+1

else
�tn �te

end
if t+�tn> final_time then

�tn final_time¡t
end if
un!!!!!!!!!!!!!!!!!!!!!!!!!!�tn un+1 (Algorithm 8.3, 8.2) computing temporal_error, checking admissibility

wn+1 
¡ 1

M

P
e
temporal_error[e]

�1
2 BM is the total number of dofs

wn+1 max fwn+1; 10¡10g BTo avoid division by zero
"n+1 1

wn+1

dt_factor  � ("n+1
�1/k "n

�2/k "n¡1
�3/k) B�(x)= 1+ tan¡1(x¡ 1)

�te  dt_factor��tn
if dt_factor � accept_safety && no inadmissibility then

accept_step  true
else

accept_step  false
end
if accept_step then

t~ t+�tn

if t~� final_time then
t~ final_time

end if
Apply callbacks BAnalyze and postprocess solution, AMR
Positivity correction for AMR (Remark 8.7)

end if
end while

8.7. Numerical results

The numerical experiments are performed on 2-D Euler's equations (2.13). Unless
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specified otherwise, the adiabatic constant 
 will be taken as 1.4 in the numerical
tests, which is the typical value for air. A comparison will be made between error and
CFL based time stepping schemes where the CFL based time stepping schemes use the
following formula for the time step (see (2.5) of [142], but also [96, 140])

�tn=
2

N +1
CCFLmin

e;p

 
1
jJe;pj

X
i=1

d

�~e;p
i

!
; CCFL� 1 (8.78)

where f�~e;pi gi=1d are wave speed estimates computed by the transformation

�~e;p
i =

X
n=1

d

(J an
i )e;p�e;p

i

for fJ aigi=1d being the contravariant vectors (8.2) and �e;p
i the absolute maximum

eigenvalue of fi0(ue;p). For Euler's equations with velocity vector v= fvig and sound
speed c, �i= jvij+ c. The CCFL in (8.78) may need to be fine-tuned depending on the
problem. Other than the convergence test (Section 8.7.2.2), the results shown below
have been generated with error-based time stepping (Section 8.6.2). The scheme is
implemented in a Julia package TrixiLW.jl written using Trixi.jl [141, 158, 157] as a
library. Trixi.jl is a high order PDE solver package in Julia [29] and uses the Runge-
Kutta Discontinuous Galerkin method; TrixiLW.jl uses Julia's multiple dispatch
to borrow features like curved meshes support and postprocessing from Trixi.jl.
TrixiLW.jl is not a fork of Trixi.jl but only uses it through Julia's package man-
ager without modifying its internal code. The setup files for the numerical experiments
in this work are available at [10]. The animations of the results presented in this chapter
can be viewed at

www.youtube.com/playlist?list=PLHg8S7nd3rfvI1Uzc3FDaTFtQo5VBUZER

8.7.1. Results on Cartesian grids

8.7.1.1. Mach 2000 astrophysical jet

The test is as described in Section 5.9.5. The simulation is performed on a uniform
5122 element mesh. This test requires admissibility preservation to be enforced to
avoid solutions with negative pressure. This is a cold-start problem as the solution
is constant with zero velocity in the domain at time t= 0. However, there is a high
speed inflow at the boundary, which the standard wave speed estimate for time step
approximation (8.79) does not account for. Thus, in order to use the CFL based time
stepping, lower values of CCFL (8.78) have to be used in the first few iterations of the
simulations. Once the high speed flow has entered the domain, this value needs to be
raised since otherwise, the simulation will use much smaller time steps than the linear
stability limit permits. In Section 5.9.5, this was handled by including the inflow wave
speed for computation of time step. Error based time stepping schemes automate this
process by their adaptivity and ability to redo the time steps. The simulation is run
till t= 10¡2 and the log scaled density plot for degree N =4 solution obtained on the
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uniform mesh is shown in Figure 8.5a. For an error-based time stepping scheme, we
define the effective CCFL as

CCFL :=�tn

"
2

N +1
min
e;p

 
1
jJe;pj

X
i=1

d

�~e;p
i

!#¡1
(8.79)

which is a reverse computation so that its usage in (8.72) will get �tn chosen in the
error-based time stepping scheme (Algorithm 8.4). In Figure 8.5b, time t versus effec-
tive CCFL (8.79) is plotted up to t=10¡5 to demonstrate that the scheme automatically
uses a smaller CCFL of �10¡3 at the beginning which later increases and stabilizes at
�10¡1. Thus, the error based time stepping is automatically doing what would have
to be manually implemented for a CFL based time stepping scheme which would be
problem-dependent and require smart user intervention.

0.0 0.2 0.4 0.6 0.8 1.0
t 1e 5

10 3

10 2

10 1

C C
FL

Error based scheme

(a) (b)

Figure 8.5. Mach 2000 astrophysical jet (a) Density plot (b) Effective CCFL

8.7.1.2. Kelvin-Helmholtz instability

This is a variant of the Kelvin-Helmholtz instability like in Section 5.9.4. The initial
condition is given by [151]

(�; u; v; p)=

�
1
2
+
3
4
B;

1
2
(B ¡ 1); 1

10
sin (2�x); 1

�
with B = tanh (15 y + 7.5)¡ tanh (15 y ¡ 7.5) in domain 
 = [¡1; 1]2 with periodic
boundary conditions. The initial condition has a Mach number M � 0.6 which makes
compressibility effects relevant but does not cause shocks to develop. Thus, a very
mild shock capturing scheme is used by setting �e=min f�e; �maxg (Section 8.4.2)
where �max= 0.002. The same smoothness indicator of Section 8.4.2 is used for AMR
indicator with parameters from Section 8.5.3 chosen to be

(base_level; med_level; max_level)= (4; 0; 8)
(med_threshold; max_threshold)= (0.0003; 0.003)
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where base_level= 0 refers to a 2� 2 mesh. This test case, along with indicators'
configuration was taken from the examples of Trixi.jl [140]. The simulation is run
till t=3 using polynomial degree N =4. There is a shear layer at y=�0.5 which rolls
up and develops smaller scale structures as time progresses. The results are shown
in Figure 8.6 and it can be seen that the AMR indicator is able to track the small
scale structures. The simulation starts with a mesh of 1024 elements which steadily
increases to 13957 at the final time; the mesh is adaptively refined or coarsened at every
time step. The solution has non-trivial variations in small regions around the rolling
structures which an adaptive mesh algorithm can capture efficiently, while a uniform
mesh with similar resolution would require 262144 elements.

(a) (b)

Figure 8.6. Kelvin-Helmholtz instability at t=3 using polynomial degree N =4 (a) density plots,
(b) adaptively refined mesh

8.7.1.3. Double mach reflection

The description and significance of this test have been given in Section 4.11.2. The setup
of Löhner's smoothness indicator (8.71) is taken from an example of Trixi.jl [140]

(base_level; med_level; max_level)= (0; 3; 6)
(med_threshold; max_threshold)= (0.05; 0.1)

where base_level= 0 corresponds to a 16� 5 mesh. The density solution obtained
using polynomial degree N = 4 is shown in Figure 8.7 where it is seen that AMR
is tracing the shocks and small scale shearing well. The initial mesh consists of 80
elements and is refined in first iteration in the vicinity of the shock to get 2411 elements.
In later iterations, the mesh is refined and coarsened in each iteration, and the number
of elements keeps increasing up to 7793 elements at the final time t= 0.2. In order to
capture the same effective refinement, a uniform mesh will require 327680 elements.
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(a)

(b)

Figure 8.7. Double Mach reflection with solution polynomial degree N =4 at t= 0.2 (a) Density
plot, (b) Adaptively refined mesh at final time

8.7.1.4. Forward facing step

The description and significance of this test have been given in Section 5.9.8. Here,
we repeat the setup to make this chapter self-contained. The step is simulated in the
domain 
=([0;3]� [0;1])n ([0.6;3]� [0;0.2]) and the initial conditions are taken to be

(�; u; v; p)= (1.4; 3; 0; 1) in 


The left boundary condition is taken as an inflow and the right one is an outflow, while
the rest are solid walls. The corner (0.6; 0.2) of the step is the center of a rarefaction
fan and can lead to large errors and the formation of a spurious boundary layer, as
shown in Figure 7a-7d of [197] and also in the results of Section 5.9.8. These errors
can be reduced by refining the mesh near the corner, which is automated here with
the AMR algorithm.

The setup of Löhner's smoothness indicator (8.71) is taken from an example of
Trixi.jl [140]

(base_level; med_level; max_level)= (0; 2; 5)
(med_threshold; max_threshold)= (0.05; 0.1)

The density at t= 3 obtained using polynomial degree N = 4 and Löhner's smooth-
ness indicator (8.71) is plotted in Figure 8.8. The shocks have been well-traced and
resolved by AMR and the spurious boundary layer and Mach stem do not appear. The
simulation starts with a mesh of 198 elements and the number peaks at 6700 elements
during the simulation then and decreases to 6099 at the final time t= 3. The mesh
is adaptively refined or coarsened once every 100 time steps. In order to capture the
same effective refinement, a uniform mesh will require 202752 elements.
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(a)

(b)

Figure 8.8. Mach 3 flow over forward facing step at time t=3 using solution polynomial degree
N =4 with Löhner's indicator for mesh refinement. (a) Density plot (b) Adaptively refined mesh

8.7.2. Results on curved grids

8.7.2.1. Free stream preservation

In this section, free stream preservation is tested for meshes with curved elements. Since
we use a reference map of degree N in (8.4), free stream will be preserved following the
discussion in Section 8.3.4. We numerically verify the same for the meshes taken from
Trixi.jl which are shown in Figure 8.9. The mesh in Figure 8.9a consists of curved
boundaries and only the elements adjacent to the boundary are curved, while the one
in Figure 8.9b is a non-conforming mesh with curved elements everywhere, and is used
to verify that free stream preservation holds with adaptively refined meshes. The mesh
in Figure 8.9b is a 2-D reduction of the one used in Figure 3 of [149] and is defined by
the global map (�; �) 7! (x; y) from [0; 3]2!
 described as

x= �+
3
8
cos
�
�
2
2 �¡ 3
3

�
cos
�
2�

2 y¡ 3
3

�
y= �+

3
8
cos
�
3�
2
2 �¡ 3
3

�
cos
�
�
2
2 �¡ 3
3

�
The free stream preservation is verified on these meshes by solving the Euler's equation
with constant initial data

(�; u; v; p)= (1; 0.1;¡0.2; 10)
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and Dirichlet boundary conditions. Figure 8.9 shows the density at time t= 10 which
is constant throughout the domain.

(a) (b)

Figure 8.9. Density plots of free stream tests with mesh and solution polynomial degree N =6 at
t= 10 on (a) mesh with curved boundaries, (b) mesh with refined curved elements

8.7.2.2. Isentropic vortex

This is a test with exact solution taken from [90] where the domain is specified by the
following transformation from [0; 1]2!


x(�; �)=

�
�Lx¡AxLy sin (2� �)
�Ly+AyLx sin (2� �)

�
which is a distortion of the square [0; Lx]� [0; Ly] with sine waves of amplitudes Ax;
Ay. Following [90], we choose length Lx = Ly = 0.1 and amplitudes Ax = Ay = 0.1.
The boundaries are set to be periodic. A vortex with radius Rv= 0.005 is initialized
in the curved domain with center (xv; yv) = (Lx/2; Ly/2). The gas constant is taken
to be Rgas= 287.15 and specific heat ratio 
 = 1.4 as before. The free stream state is
defined by the Mach numberM0=0.5, temperature T0=300, pressure p0=105, velocity
u0=M0 
RgasT0

p
and density �0=

p0
Rgas T0

. The initial condition u0 is given by

(�; u; v; p)=

 
�0

�
T
T0

� 1


¡1
; u0

�
1¡ � y¡ yv

Rv
e
¡r2
2

�
; u0 �

x¡xv
Rv

e
¡r2
2 ; �(x; y)RgasT

!
T (x; y)=T0¡

(u0 �)2

2Cp
e¡r

2
; r= (x¡xv)2+(y¡ yv)2

p
/Rv

where Cp=Rgas 
/(
¡ 1) is the heat capacity at constant pressure and �= 0.2 is the
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vortex strength. The vortex moves in the positive x direction with speed u0 so that the
exact solution at time t is u(x; y; t)=u0(x¡u0 t; y) where u0 is extended outside 
 by
periodicity. We simulate the propagation of the vortex for one time period tp=Lx/u0
and perform numerical convergence analysis for degree N =3 in Figure 8.10b, showing
optimal rates in grid versus L2 error norm for all the conserved variables.
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(a) (b)

Figure 8.10. Convergence analysis for isentropic vortex problem with polynomial degree N = 3.
(a) Density plot, (b) L2 error norm of conserved variables

8.7.2.3. Supersonic flow over cylinder
Supersonic flow over a cylinder is computed at a free stream Mach number of 3 with
the initial condition

(�; u; v; p)= (1.4; 3; 0; 1)

Solid wall boundary conditions are used at the top and bottom boundaries. A bow
shock forms which reflects across the solid walls and interacts with the small vortices
forming in the wake of the cylinder. The setup of Löhner's smoothness indicator (8.71)
is taken from an example of Trixi.jl [140]

(base_level; med_level; max_level)= (0; 3; 5)
(med_threshold; max_threshold)= (0.05; 0.1)

where base_level=0 refers to mesh in Figure 8.11a. The flow consists of a strong shock
and thus the positivity limiter had to be used to enforce admissibility. The flow behind
the cylinder is highly unsteady, with reflected shocks and vortices interacting con-
tinuously. The density profile of the numerical solution at t=10 is shown in Figure 8.11
with mesh and solution polynomial degree N = 4 using Löhner's indicator (8.71) for
AMR. The AMR indicator is tracing the shocks and the vortex structures forming
in the wake well. The initial mesh has 561 elements which first increase to 63000
elements followed by a fall to 39000 elements and then a steady increase to the peak
of 85000 elements from which it steadily falls to 36000 elements by the end of the
simulation. The mesh is refined or coarsened once every 100 time steps. In order
to capture the same effective refinement, a uniform mesh will require 574464 elements.
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(a)

(b)

(c)

Figure 8.11. Mach 3 flow over cylinder using solution and mesh polynomial degree N =4 at t=10
(a) Initial mesh, (b) adaptively refined mesh at final time, (c) density plot at final time.
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8.7.2.4. Inviscid bow shock upstream of a blunt body
This test simulates steady supersonic flow over a blunt body and is taken from [90]
which followed the description proposed by the high order computational fluid dynamics
workshop [36]. The domain, also shown in Figure 8.12 consists of a left and a right
boundary. The left boundary is an arc of a circle with origin (3.85; 0) and radius
5.9 extended till x= 0 on both ends. The right boundary consists of (a) the blunt
body and (b) straight-edged outlets. The straight-edged outlets are f(0; y): jy j> 0.5g
extended till the left boundary arc. The blunt body consists of a front of length
1 and two quarter circles of radius 0.5. The domain is initialized with a Mach 4
flow, which is given in primitive variables by

(�; u; v; p)= (1.4; 4; 0; 1) (8.80)

The left boundary is set as supersonic inflow, the blunt body is a reflecting wall and
the straight edges at x= 0 are supersonic outflow boundaries. Löhner's smoothness
indicator (8.71) for AMR is set up as

(base_level; med_level; max_level)= (0; 1; 2)
(med_threshold; max_threshold)= (0.05; 0.1)

where base_level=0 refers to mesh in Figure 8.12a. Since this is a test case with a
strong bow shock, the positivity limiter had to be used to enforce admissibility. The
pressure obtained with polynomial degree N =4 is shown in Figure 8.12 with adaptive
mesh refinement performed using Löhner's smoothness indicator (8.71) where the AMR
procedure is seen to be refining the mesh in the region of the bow shock. The initial
mesh (Figure 8.12a) has 244 elements which steadily increases to �1600 elements till
t�1.5 and then remains nearly constant as the solution reaches steady state. The mesh
is adaptively refined or coarsened at every time step.

(a) (b) (c) (d)

Figure 8.12. Mach 4 flow over blunt body using polynomial degree N =4 showing (a) initial mesh,
(b) adaptively refined mesh, (c) pressure plot, (d) Mach number plot

8.7.2.5. Transonic flow over NACA0012 airfoil
This is a steady transonic flow over the symmetric NACA0012 airfoil. The initial
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condition is taken to have Mach numberM0=0.85 and it is given in primitive variables
as

(�; u; v; p)=

�
p0
T0R

;U0 cos �; U0 sin �; p0

�
where p0=1; T0=1; R= 287.87; �=�/180, U0=M0 c0 and sound speed c0= 
 p0/�0

p
.

The airfoil is of length 1 unit located in the rectangular domain [¡20;20]2 and the initial
mesh has 728 elements. We run the simulation with mesh and solution polynomial
degree N =6 using Löhner's smoothness indicator (8.71) for AMR with the setup

(base_level; med_level; max_level)= (1; 3; 4)
(med_threshold; max_threshold)= (0.05; 0.1)

where base_level=1 refers to the mesh in Figure 8.13a . In Figure 8.13, we show the
initial and adaptively refined mesh. In Figure 8.14, we show the Mach number and
compare the coefficient of pressure Cp on the surface of airfoil with SU2 [70] results,
seeing reasonable agreement in terms of the values and shock locations. The AMR
procedure is found to steadily increase the number of elements till they peak at �4200
and decrease to stabilize at�3750; the region of the shocks is being refined by the AMR
process. The mesh is adaptively refined or coarsened once every 100 time steps. In order
to capture the same effective refinement, a uniform mesh will require 186368 elements.

(a) (b)

Figure 8.13. Meshes for transonic flow over NACA0012 airfoil. (a) Initial mesh (b) adaptively
refined mesh
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Figure 8.14. Transonic flow over airfoil using degree N =6 on adapted mesh (a) Mach number (b)
Coefficient of pressure on the surface of the airfoil
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8.7.3. Performance comparison of time stepping schemes

In Table 8.1, we show comparison of total time steps needed by error (Algorithm 8.4)
and CFL (8.78) based time stepping methods for test cases where non-Cartesian meshes
are used. The total time steps give a complete description of the cost because our
experiments have shown that error estimation procedure only adds an additional com-
putational cost of �4%. The relative and absolute tolerances �a; �r in (8.74) are taken
to be the same, and denoted tolE. The iterations that are redone because of error
or admissibility criterion in Algorithm 8.4 are counted as failed (shown in Table 8.1
in red) while the rest as successful (shown in Table 8.1 in blue). The comparisons are
made between the two time stepping schemes as follows - the constant CCFL in (8.78)
is experimentally chosen to be the largest which can be used without admissibility
violation while error based time stepping is shown with tolE = 1e-6 and the best tol-
erance for the particular test case (which is either 1e-6 or 5e-6). Note that the choice
of tolE = 1e-6 is made in all the results shown in previous sections. A poor quality
(nearly degenerate) mesh (Figure 8.12b) was used in the flow over blunt body (Sec-
tion 8.7.2.4) and thus the CFL based scheme could not run till the final time t=
10 without admissibility violation for any choice of CCFL. However, the error-based
time stepping scheme is able to finish the simulation by its ability to redo time steps;
although there are many failed time steps as is to be expected. The error-based time
stepping scheme is giving superior performance with tolE = 1e-6 for the supersonic
flow over cylinder and transonic flow over airfoil (curved meshes tests) with ratio
of total time steps being 1.755 and 1.43 respectively. However, for the forward facing
step test with a straight sided quadrilateral mesh, error based time stepping with tolE
= 1e-6 takes more time steps than the fine-tuned CFL based time stepping. However,
increasing the tolerance to tolE = 5e-6 gives the same performance as the CFL based
time stepping. By using tolE = 5e-6, the performance of supersonic flow cylinder
can be further obtained to get a ratio of 2.327. These results show the robustness of
error-based time stepping and even improved efficiency in meshes with curved elements.

CFL
(8.78)

Error
(Alg. 8.4)

(Pass + Fail)
Ratio

tolE=1e-6 CFL
tolE=1e-6

Best tolE CFL
Best tolE

FF Step
(8.7.1.4)

5706455
7661457

(7661453+4)
0.74

5646355 (5e-6)
(5646355 + 5)

1.01

Cylinder
(8.7.2.3)

1529064
871262

(871124 + 138)
1.755

657170 (5e-6)
(651118+6052)

2.327

Blunt
(8.7.2.4)

-
4200

(3800 + 400)
-

4200 (1e-6)
(3800 + 400)

-

Airfoil
(8.7.2.5)

6856828
4778674

(4778651 + 23)
1.43

4778674 (1e-6)
(4778651 + 23)

1.43

Table 8.1. Number of time steps comparing error and CFL based methods
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8.8. Summary and conclusions

The Lax-Wendroff Flux Reconstruction (LWFR) scheme has been extended to curvi-
linear and dynamic, locally adapted meshes. On curvilinear meshes, it is shown that
satisfying the standard metric identities gives free stream preservation for the LWFR
scheme. The subcell based blending scheme of Chapter 5 has been extended to curvi-
linear meshes along with the provable admissibility preservation (Section 5.2) based
on the idea of appropriately choosing the blended numerical flux (Section 5.5) at the
element interfaces. Adaptive Mesh Refinement has been introduced for LWFR scheme
using the Mortar Element Method (MEM) of [106]. Fourier stability analysis to com-
pute the optimal CFL number as in Section 4.4 is based on uniform Cartesian meshes
and does not apply to curvilinear grids. Thus, in order to use a wave speed based time
step computation, the CFL number has to be fine tuned for every problem, especially
for curved grids. In order to decrease the fine-tuning process, an embedded error-
based time step computation method was introduced for LWFR by taking difference
between two element local evolutions of the solutions using the local time averaged
flux approximations - one which is order N + 1 and the other truncated to be order
N . This is the first time error-based time stepping has been introduced for a single
stage evolution method for solving time dependent equations. Numerical results using
compressible Euler equations were shown to validate the claims. It was shown that free
stream condition is satisfied on curvilinear meshes even with non-conformal elements
and that the LWFR scheme shows optimal convergence rates on domains with curved
boundaries and meshes. The AMR with shock capturing was tested on various prob-
lems to show the scheme's robustness and capability to automatically refine in regions
comprising of relevant features like shocks and small scale structures. The error based
time stepping scheme is able to run with fewer time steps in comparison to the CFL
based scheme and with less fine tuning. The speed-up obtained by error based time
stepping for curvilinear meshes was in the range of 1.43 and 2.33.
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Chapter 9

Parabolic equations

9.1. Introduction

In this chapter, we develop the LWFR scheme to solve second order PDE in conserva-
tive form using the BR1 scheme [22]. Examples of such equations include compressible
Navier-Stokes and resistive magnetohydrodynamics. Following Chapter 8, we solve
second order equations on curvilinear meshes and use error based time stepping.

This chapter is organized as follows. In Section 9.2, the notations and transforma-
tions of second order equations from curved element to a reference cube are reviewed. In
Section 9.3, the LWFR scheme for second order equations is introduced. In Section 9.4,
the treatment of boundary conditions is described. The numerical results are shown
in Section 9.5 and a summary of the chapter is provided in Section 9.6.

9.2. Curvilinear coordinates for parabolic equa-
tions

We work with a system of parabolic equations in conservative form in d dimensions

@tu+rx � fa(u)=rx � f v(u;rxu) (9.1)

with some initial and boundary conditions. Here, u2Rp is the solution vector and its
gradient is the matrix rxu= (@x1u; : : : ; @xdu)2Rp�d. The fa; f v are the advective
and viscous fluxes and can be seen as matrices f =(f1; : : : ; fd)2Rp�d, x is in domain

�Rd and divergence of a flux is given by rx � f =

P
i=1

d
@xi fi. Following [78], we

introduce some notations to describe the scheme. The action of a vector b 2Rd on
v 2Rp gives bv 2Rp�d which is defined component-wise as

bv=(bjv)j=1
d (9.2)

Further, the action of a matrix B=(b1; : : : ; bd)2Rd�d on v= (v1; : : : ;vd)2Rp�d also
gives Bv 2Rp�d defined as

Bv=
X
i=1

d

bivi; bivi=(bijvi)j=1
d (9.3)
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The second order system (9.1) will be reduced to a first order system of equations
following the BR1 scheme [22] where an auxiliary variable q is introduced

q¡rxu = 0
@tu+rx � f(u; q) = 0

(9.4)

We will be using the same FR elements f
eg (8.3), reference map x=�(�) (8:4),
multi-index p2NN

d (8.5), Lagrange polynomial basis f`pgp2NNd as in Section 8.2 and
again denote the covariant and contravariant basis vectors as faigi=13 ; faigi=13 (Defin-
ition 8.1, 8.2). The covariant and contravariant vectors will now be used to map the
equations (9.4) to the reference element 
o= [¡1; 1]d.

Using the Leibniz product rule of differentiation, and the metric identity (8.14) on
the transformation of a gradient transformation (8.11), we get the non-conservative
form of gradient of a scalar � and thus of a vector u in vector action notation (9.2)

rx�=
1
J

X
i=1

d

Jai
@�
@ �i

; rxu=
1
J

X
i=1

d

Jai
@u
@ �i

(9.5)

Following the notation of [78], define the transformation matrixM=(Ja1; : : : ; Jad)2
Rd�d so that with the matrix action notation (9.3)

rxu=
1
J
Mr�u (9.6)

Within each element 
e, performing change of variables with the reference map
�e (8.11, 8.10), the first order system (9.4) transforms into

J q¡Mr�u = 0

J @tu+r� � f~a = r� � f~v(u; q)
(9.7)

where, as in (8.13), we have

(f~�)i= Jai � f~�=
X
n=1

d

J an
i fn

�; �= a; v (9.8)

9.3. Lax-Wendroff flux reconstruction

As in the earlier chapters, the solution of (9.1) will be approximated by piecewise poly-
nomial functions which are allowed to be discontinuous across the elements. Within
each element 
e, the solution will be represented by degree N Lagrange basis in the
reference coordinates (8.15) and ue;p are the unknown values at solution points which
are taken to be GLL points.
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9.3.1. Solving for q

The system (9.7) is solved at each time step for evolving the numerical solution from
time tn to tn+1, where the first step is solving the equations for q. The BR1 scheme
was initially introduced for Discontinuous Galerkin (DG) method in [22] and is used
as a Flux Reconstruction (FR) scheme by exploiting the equivalence between FR and
DG [94], see for example [195]. Here, we show the first step in the FR framework9.1,
repeating some notations from Chapter 8. Recall that we defined the multi-index
p=(pi)i=1

d where pi2f0;1 : : : ;N g. Let i2f1; : : : ; dg denote a coordinate direction and
S2fL;Rg so that (S; i) corresponds to the face @
o;is in direction i on side S which has
the reference outward normal n̂S;i, see Figure 8.1. Thus, @
o;iR denotes the face where
reference outward normal is n̂R;i=ei and @
o;iL has outward unit normal n̂L;i=¡n̂R;i.

The FR scheme is a collocation at each of the solution points f�p=(�pi)i=1d ; pi=0;:::;

N g. We will thus explain the scheme for a fixed �= �p and denote �iS as the projection
of � to the face S = L; R in the ith direction (Figure 8.1), as defined in (8.16). A
correction of ue� is performed to obtain ue as

ue(�)=ue
�(�)+ (ue

�¡ue�)(�iR) gR(�pi)+ (ue
�¡ue�)(�iL) gL(�pi) (9.9)

where ue�(�iS) denotes the trace value of the normal flux in element e and ue�(�iS) denotes
an approximation of the solution at the interface (S; i) which is chosen to be

ue
�(�i

S)=
1
2
(uS;i

+ +uS;i
¡ ) (9.10)

and gL; gR are FR correction functions [94] (Section 3.4). Thus, q can be obtained
from (9.7) as

q=
1
J
Mr�ue(�) (9.11)

9.3.2. Time averaging

The LWFR scheme is obtained by performing the Lax-Wendroff procedure for Carte-
sian domains on the transformed equation (9.7). Let un denote the solution at time
t= tn and qn denoting the gradient computed from (9.11). As we did in the previous
chapters, the solution at the next time level can be written as

un+1=un+
X
k=1

N+1
�tk

k!
@t
(k)un+O(�tN+2)

where N is the solution polynomial degree. Then, use ut=¡ 1

J
r� � (f~a¡ f~v) from (9.7)

to swap a temporal derivative with a spatial derivative and retain terms up to �t to get

un+1=un¡ 1
J

X
k=1

N+1
�tk

k!
@t
(k¡1) (r� � f~a)+

1
J

X
k=1

N+1
�tk

k!
@t
(k¡1) (r� � f~v)

9.1. Unlike FR, there is no physical flux in the first step of the BR1 scheme where we solve for q. We
call this step FR due to the application of correction functions to enforce global continuity.
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Shifting indices and writing in a conservative form gives

un+1=un¡ �t
J
r� �F~a+

�t
J
r� �F~v (9.12)

where F~a;F~v are time averages of the contravariant advective and viscous fluxes f~a; f~v

F~�=
X
k=0

N
�tk

(k+1)!
@t
kf~�� 1

�t

Z
tn

tn+1

f~�dt; �= a; v (9.13)

We will find local order N + 1 approximations F~ea�; F~ev� to F~a; F~v (Section 9.3.2.1)
which will be discontinuous across element interfaces. Then, in order to couple the
neighbouring elements, continuity of the normal fluxes at the interfaces will be enforced
by constructing the continuous flux approximation using the FR correction functions
gL; gR [94] (Section 3.4) and the numerical fluxes. Thus, once the local approximations
F~e
a�;F~e

v� are computed, we construct the advective and viscous numerical fluxes for
element e in coordinate direction i 2 f1; : : : dg at the side S 2 fL; Rg (following the
notation from (8.16)) by using Rusanov's [152] and the central flux respectively

(F~e
a � n̂S;i)

� =
1
2
((F~a� � n̂S;i)

++(F~a� � n̂S;i)
¡)¡ �S;i

2
(US;i

+ ¡US;i
¡ ) (9.14)

(F~e
v � n̂S;i)

� =
1
2
((F~v� � n̂S;i)

++(F~v� � n̂S;i)
¡) (9.15)

The (F~� � n̂S;i)
� and US;i

� denote the trace values of the normal flux and time average
solution from outer, inner directions respectively; the inner direction corresponds to the
element e while the outer direction corresponds to its neighbour across the interface
(S; i). The Rusanov's flux (9.13) is exactly as discussed in the inviscid case (8.26).

The advective and viscous fluxes have been treated separately so far to keep a
simple implementation of the different boundary conditions of the two. However, for
the final evolution (9.12), we can combine them to define F~ =F~a¡F~v, so that the
interface numerical fluxes can also be summed as (F~e � n̂S;i)

�=(F~e
a � n̂S;i)

�¡ (F~ev � n̂S;i)
�

and thus the continuous time averaged numerical flux is constructed as

(F~e(�))
i=(F~e

�(�))i +((F~e � n̂R;i)�¡F~e� � n̂R;i)(�iR) gR(�pi)
¡((F~e � n̂L;i)�¡F~e� � n̂L;i)(�iL) gL(�pi)

(9.16)

Substituting F~e in (9.12), the explicit LWFR update is

ue;p
n+1=ue;p

n ¡ �t
Je;p
r� �F~e�(�p) ¡

�t
Je;p

X
i=1

d

((F~e � n̂R;i)�¡F~e� � n̂R;i)(�iR) gR0 (�pi)

+
�t
Je;p

X
i=1

d

((F~e � n̂L;i)�¡F~e� � n̂L;i)(�iL) gL0 (�pi)
(9.17)
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9.3.2.1. Approximate Lax-Wendroff procedure

We now illustrate how to locally approximate F~a�;F~v� (9.13) for degree N =1 using
the approximate Lax-Wendroff procedure [208]. For N =1, (9.13) requires @tf~

a; @tf~
v

which are

@tf~
a � f~a(u+�tut)¡ f~a(u¡�tut)

2�t
:=@tf~a�

@tf~
v � f~v(u+�tut;ru+�t (ru)t)¡ f~v(u¡�tut;ru¡�t (ru)t)

2�t
:=@tf~

v�

(9.18)

and ut; (ru)t are approximated using (9.7)

ut=¡
1
J
r� � (f~a�¡ f~v�); (ru)t=

1
J
Mr�ut (9.19)

where f~ea�; f~ev� are degree N cell local approximations to the fluxes f~a; f~v given in (9.7)
constructed by interpolation (8.17)

(f~e
a�)i=

X
p

f~a(ue;p) `p; (f~v�)i=
X
p

f~v(ue;p; qe;p) `p (9.20)

where q is obtained in (9.11). The procedure for other degrees will be similar following
Section 4.2.4.

9.3.3. Free stream preservation
Assume a constant solution un= c. The correction terms in (9.9) will be zero since a
globally constant solution will be continuous across element interfaces. Thus, ue=ue�=
c, proving that q=0 from (9.11). Thus, we can now suppress dependence of q on f v

and, in particular, write f~v= f~v(ue). Thus, the equation we are solving for evolution
from tn to tn+1 is now

ut+
1
J
r� � f~(u)=0; f~= f~a¡ f~v

implying that the arguments for free stream preservation for LWFR on hyperbolic
conservation laws used in Chapter 8 apply to parabolic equations. Thus, as proven
in Section 8.3.4, the free stream will be preserved as long the metric identity (8.14) is
satisfied for interpolated metric terms (8.35).

9.4. Boundary conditions
In this section, we discuss the treatment of additional boundary conditions required to
solve second order equations (9.1). We explain the implementation for the 1-D scheme
which is applied to higher dimensions across normal direction. Consider a grid with
elements f
ege=1M where 
1;
M are the left, right boundary elements. In addition to
the advective numerical flux (9.13), application of boundary conditions is needed in
the first step of BR1 scheme when computing (9.10) and when computing the viscous
central flux (9.14). These additional boundary conditions are discussed in this section.
We denote the discontinuous numerical solution as ue�(�) and the globally continuous
approximation is given by

ue(�)=ue
�(�)+ (ue+ 1

2
¡u

e+
1

2

¡ ) gR(�)+ (ue¡ 1

2
¡u

e¡ 1

2

+ ) gL(�) (9.21)
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where ue+ 1

2
is the interface value given by

ue+ 1

2
=
1
2
(u

e+
1

2

+ +u
e+

1

2

¡ ) (9.22)

Similarly, the discontinuous viscous flux approximation is denoted as Fev�(�) and its
globally continuous approximation is given by

Fe
v(�)=Fe

v�(�)+ (F
e+

1

2

v ¡F
e+

1

2

v¡ ) gR(�)+ (F
e¡ 1

2

v ¡F
e+

1

2

v+ ) gL(�) (9.23)

where F
e+

1

2

v is the interface value which we compute as

F
e+

1

2

v =
1
2
(F

e+
1

2

v+ +F
e+

1

2

v¡ ) (9.24)

With these notations, application of boundary conditions involves specification of u1

2
;

uM+
1

2
and F1

2

v;F
M+

1

2

v . In some cases, the boundary conditions are enforced through the

ghost values which are F
M+

1

2

v+ ;u
M+

1

2

+ for the right boundary and F1

2

v¡;u1

2

¡ for the left

boundary. After specification of the ghost values, (9.22, 9.24) can be used to compute
the boundary values. In other cases, the boundary values u1

2
;uM+

1

2
and F1

2

v;F
M+

1

2

v are
specified directly.

Periodic boundary. In case of periodic boundaries, the ghost values are specified
as follows.

F
M+

1

2

v+ ;u
M+

1

2

+ = F1

2

v+;u1

2

+

F1

2

v¡;u1

2

¡ = F
M+

1

2

v¡ ;u
M+

1

2

¡

This enables us to compute (9.21, 9.23) at the boundary faces.

Dirichlet/Inflow boundary. Assume that the left boundary is an inflow boundary.
Let the boundary condition be given by u(0; t)= g(t). The solution at the boundary
is given by

u1

2
= g(t)

The viscous flux at boundary is computed as

F1

2

� 1
�t

Z
tn

tn+1

f v(g(t); (ru1(tn))¡) dt

If the integral cannot be computed analytically, then it is approximated by quadrature
in time. From (9.13), we see that integral must be at least accurate to O(�tN+1) which
is of the same order as the neglected terms in (9.13). In the numerical tests, we use
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(N +1)-point Gauss-Legendre quadrature which ensures the required accuracy.

Outflow boundary. Assume that the right boundary is an outflow boundary. In
this case, the values across the right boundary are computed using the interior solution
and flux so that uM+

1

2
=u

M+
1

2

¡ and F
M+

1

2

v =F
M+

1

2

v¡ where F
M+

1

2

v¡ is obtained from the

Lax-Wendroff procedure.

The remaining boundary conditions used in this chapter are specific to the Navier-
Stokes equations (2.14) and are explained for 2-D. The viscous flux is given by

f v=

0BB@ 0
�

�v¡rQ

1CCA;
We will assume that the respective boundary conditions are on left boundary element
with index e=(1; ey) whose left face is given by ef =(1/2; ey).

No-slip, adiabatic walls.

At no-slip boundaries, tangential component of velocity vector v is set to be the
speed of the wall, while the normal component is set to zero. In case of the left face
ef=(1/2; ey), the velocity is set to vef=(0; vey). Thus, the boundary value of solution
is specified in primitive variables as

uef
prim=(�ef

+ ;vef ; pef
+ )

Adiabatic walls are those where the normal heat flux is zero and thus the viscous flux
is specified as

(Fef
v �n) = ((Fef

v+ �n)1; (Fef
v+ �n)2; (Fef

v+ �n)3; (�ef
+n) �vef)

= (0; (Fef
v+ �n)2; (Fef

v+ �n)3; (�ef
+n) �vef)

where n is the normal vector at the face ef.

In numerical results, unless specified otherwise, the velocity in no-slip walls is
zero. We will refer to a wall as moving with speed v if it is no-slip and the tangential
component is specified to have speed v.

No-slip, Isothermal walls.

The velocity vef is treated the same as in the case of no-slip, adiabatic walls.
Additionally, in an isothermal wall, the temperature Tef is specified. The temperature
is enforced by setting the pressure to be pef= �ef

+ RTef. The solution is thus specified
at boundaries in terms of primitive variables as

uef
prim=(�ef

+ ;vef ; pef)
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The viscous flux is specified using the inner values as follows.

(Fef
v �n)= (Fef

v+ �n)

9.5. Numerical results

The numerical experiments were made with the compressible Navier Stokes equa-
tions (2.16), with most test cases taken from [144]. The error based time stepping from
Section 8.6.2 is used in all experiments other than the convergence tests. The error
based time stepping is applied to parabolic equations by using the local time averaged
flux (8.75, 8.24) to be the total of time averaged advective and viscous fluxes (9.13).
The subsequent step of truncating the time averaged flux (8.76) to obtain an embedded
lower order method (8.77) remains the same. Absolute and relative tolerances (8.74)
of �a= �r= 10¡8 are used in all experiments.

The results have been generated by extending the package TrixiLW.jl developed in
Chapter 8 to solve parabolic equations. The setup files for the numerical experiments
in this chapter are available at [15].

9.5.1. Convergence test
Consider the scalar advection-diffusion equation ut+ a � r u= � � u where a= (1.5;
1). For the initial condition u0(x; y) = 1+ 0.5 sin (� (x+ y)) on [¡1; 1]2 with periodic
boundary conditions, the exact solution is given by

u(x; y)= 1+ 0.5 e¡2��
2t sin (� (x¡ a1 t+ y¡ a2 t))

A convergence analysis with � chosen to be in diffusion and advection dominated
regimes is performed and shown in Figure 9.3, and optimal convergence rates are seen
for all solution polynomial degrees. For non-periodic boundaries, we use the Eriksson-
Johnson test [72] which is also a scalar advection diffusion with a=(1;0) and �=0.05
on domain [¡1; 0]� [¡0.5; 0.5] with exact solution that decays to a steady state

u(x; y)= exp(¡l t) (e�1x¡ e�2x)+ cos(� y)
e�x¡ er1x
e¡s1¡ e¡r1

�1; �2=
(¡1� 1¡ 4 � l

p
)

¡2 � ; l=4

r1; s1=
1� 1+4�2 �2

p
2 �

(9.25)

Dirichlet boundary conditions are used on left, bottom and top boundaries and outflow
conditions on the right. The initial and numerical solution at t= 1 on a 1282 mesh
are shown in Figure 9.1. The convergence results are shown in Figure 9.4a where
degree N =2; 4 show optimal rates while degree N =3 nears 3.54 order accuracy. The
suboptimal accuracy for this test using N = 3 is also seen for Runge-Kutta FR/DG
solvers of Trixi.jl. The phenomenon is similar to the nonlinear Burgers' convergence
test (Section 4.7.3) where suboptimal convergence rates were seen for odd degrees,
especially when Gauss-Legendre-Lobatto points were used.
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(a) (b)

Figure 9.1. Errikson-Johnson test (a) Initial condition (b) Numerical solution at t=1

A convergence analysis is also made for the Navier-Stokes equations on the domain
[¡1;1]2 with a manufactured solution taken from one of the examples in Trixi.jl [141]
given by

� = c+A sin (�x) cos (� y) cos (� t)
v1= v2 = sin (�x) log (y+2) (1¡ e¡A(y¡2)) cos (� t)

p = �2
(9.26)

The manufacturing of solution will lead to source terms which will be treated as in
Chapter 6. The vertical boundaries are periodic and horizontal boundaries are no slip,
adiabatic walls. The density and v1 plot of numerical solution at t= 1 are shown in
Figure 9.2. The error convergence analysis for density profile is shown in Figure 9.4b,
where optimal convergence rates are seen for all polynomial degrees.

(a) (b)

Figure 9.2. Numerical solution for Navier-Stokes equations with manufactured exact solu-
tion (9.26). (a) Density plot, (b) vx plot
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Figure 9.3. Convergence analysis for scalar advection-diffusion equation with a= (1.5; 1)
and coefficient (a) �=5� 10¡2 (b) �= 10¡12
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Figure 9.4. Convergence analysis with non-periodic boundary conditions. (a) Eriksson-
Johnson test (Section 4 of [72]) and (b) Navier-Stokes equations with manufactured solution.

9.5.2. Lid driven cavity

This is a steady state test case for the Navier Stokes equations in the square domain
[0; 1]2. We take the setup from [79] where Pr=0.7, �= 0.001 and the initial condition
is the solution at rest

(�; u; v; p)=

�
1; 0; 0;

1

M1
2 


�
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where M1= 0.1. The top boundary is moving with a velocity of (1; 0) and the other
three have no-slip boundary conditions. All boundaries are adiabatic. The problem
has a Reynolds number of 1000 corresponding to the top moving wall. The laminar
solution of the problem is steady, with Mach number 0.1 corresponding to the moving
lid. We compare the solution with the numerical data of Ghia et al. [79] by plotting the
horizontal velocity profile along the vertical line through the midpoint of the domain,
and vertical velocity profile along the horizontal line through the midpoint of the
domain. The x-velocity plot along with velocity vectors are shown in Figure 9.5. The
comparison is shown in Figure 9.6, where a good agreement with [79] is seen.

Figure 9.5. Lid driven cavity, x-velocity pseudocolor plot and velocity vectors.
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Figure 9.6. Velocity profiles of lid driven cavity test. (a) vy cut at y=0.5 (b) vx cut at x=0.5.

9.5.3. Transonic flow past NACA-0012 airfoil

This test case involves a steady flow past a symmetric NACA-0012 airfoil. We choose
the free stream density and pressure as �1=1; p1=2.85 and Prandtl number Pr=0.72,
and simulate a flow corresponding to a Reynolds number 500, free-streamMach number
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of 0.8 and 10� angle of attack. The free-stream velocity is set at u1= (1.574; 0.277).
The following additional quantities are considered for validation of the scheme:

� Surface pressure coefficient Cp and surface skin friction coefficient Cf along the
airfoil surface

Cp=
p¡ p1

1

2
�1 jv1j2 l1

; Cf =
(�n)n?

1

2
�1 jv1j2 l1

� Pressure induced lift and drag force coefficients

cdp=

R
S
p (n	d) ds

1

2
�1 jv1j2 l1

; cdp=

R
S
p (n	l)ds

1

2
�1 jv1j2 l1

� Lift and drag force coefficients due to viscous forces

cdp=

R
S
(�n) �	dds

1

2
�1 jv1j2 l1

; cdp=

R
S
(�n) �	l ds

1

2
�1 jv1j2 l1

where n is the inward unit normal at domain boundary, n? is the tangent at the
domain boundary, 	d=(cos�; sin�)?;	l=(¡sin�; cos�)?, with � being the angle of
attack.

The simulation is performed with 728 elements and polynomial degree N =4. The
mesh and Mach number contour plot are shown in Figure 9.7. In Figure 9.8, coeffi-
cient of pressure Cp and coefficient of friction Cf over the airfoil surface are compared
with [171], showing good agreement for Cp and same for Cf everywhere other than the
leading edge where there are some errors. The coefficients of pressure induced drag and
lift (cdp; clp), and drag and lift due to viscous forces (cdf ; clf) are shown in Table 9.1
and a good agreement with [171] is seen.

(a) (b)

Figure 9.7. Transonic flow over a NACA-0012 airfoil with M1= 0.8 solved on a mesh with
728 elements using solution polynomial degree N =4. (a) Mesh (b) Mach number contour.

206 Parabolic equations



0.0 0.2 0.4 0.6 0.8 1.0
x

0.5

0.0

0.5

1.0

C p
Re = 500, M = 0.8, AoA = 10°

LWFR
Swanson

0.0 0.2 0.4 0.6 0.8 1.0
x

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.1

0.2

C f

Re = 500, M = 0.8, AoA = 10

LWFR
Swanson

(a) (b)

Figure 9.8. Transonic flow over an airfoil, quantities of interest on surface. (a) Coefficient
of pressure and (b) Coefficient of friction

cdp cdf clp clf clp+clf
LWFR 0.1467 0.1242 0.4416 -0.0043 0.4373

Reference 0.1475 0.1275 � � 0.4363

Table 9.1. Transonic flow over an airfoil compared with data from [171].

9.5.4. Flow past a cylinder
This test involves a laminar, unsteady flow past a cylinder inside a channel [156].
On the left, the inflow boundary condition is imposed with p= � = 160.7143, v1=
4 vm y (H ¡ y)/H2 where H = 0.41m and vm= 1.5m/s is the maximum velocity, and
v2=0. The Mach number corresponding to vm is 0.1. The v1 velocity has a quadratic
profile in y and is symmetric for y2 [0;H]. The cylinder is placed so that its center is
at (H /2; H /2)¡ (0.005; 0.005) so that it is slightly offset in y from the center of the
channel to destabilize the otherwise steady symmetric flow (Figure 9.9).

Figure 9.9. Physical domain used in Von Karman street.

Isothermal, no-slip boundary conditions are imposed on the cylinder surface, and
the top and bottom boundaries. The viscosity coefficient is �= 10¡3 so that Reynolds
number of the flow corresponding to the mean velocity is 100. The simulation is per-
formed on a mesh with 5692 elements and polynomial degree N =4 so that �x�0.01.
After some time, a Von Karman vortex street appears with a periodic shedding of
eddies from alternate sides of the cylinder. This is typical for slow flows past a slender
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body. The vorticity profile is shown in Figure 9.10, which clearly depicts the periodic
vortex shedding. The periodic behavior can also be observed in Figure 9.11 where the
evolution of the coefficient of total lift cl= clp+ clf and the coefficient of total drag
cd= cdp+ cdf on the surface of cylinder is shown. The time period of the cl profile is
� � 0.33759 so that the Strouhal number is St=FD/u� =D/(� u�) = 0.29621 where
D = 0.1; u� = 1 are the diameter of cylinder and mean velocity. This value is in the
reference range of [156]. The values Max cl and Max cl are not in the reference range
but are close, as shown in Table 9.2.

Figure 9.10. Vorticity plot of Von Karman street
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Figure 9.11. Flow over cylinder. (a) Coefficient of lift cl (b) Coefficient of drag cd.

Max cl Max cd St
LWFR 0.906 3.136 0.29621

Reference range [0.99; 1.01] [3.22; 3.24] [0.284; 0.3]

Table 9.2. Comparison of quantities of interest for flow past cylinder

9.6. Summary
The Lax-Wendroff Flux Reconstruction (LWFR) scheme has been extended to para-
bolic equations along with its capability of handling curved meshes and error based
time stepping proposed in Chapter 8. The scheme has been numerically validated by
performing convergence and other validation tests on the compressible Navier Stokes
equations.
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Chapter 10

Conclusions

A conservative, Jacobian-free and single step, explicit Lax-Wendroff method has been
constructed in flux reconstruction context. The Jacobian free property is achieved
by using the approximate Lax-Wendroff procedure, leading to a procedure where the
scheme only requires the specification of physical flux and numerical flux. Special
attention was paid to construction of numerical flux; the dissipative part of the numer-
ical flux was computed with the time averaged solution (called D2 dissipation) leading
to an upwind flux in the linear case and improved CFL numbers at no additional
computational cost. The scheme with D2 dissipation is proven to be equivalent to
ADER schemes for linear problems. The central part of the Lax-Wendroff numerical
flux was computed by performing the approximate Lax-Wendroff procedure at the
faces (EA scheme) rather than using the extrapolated time averaged flux from solution
points (AE scheme). It was observed that the EA scheme improved accuracy of the
LWFR scheme and some tests showed optimal order of convergence only with the EA
scheme. The development of various numerical fluxes like HLL, HLLC and Roe for
the LWFR scheme with the improvements was made. The new scheme and its benefits
were validated by performing convergence analysis, analyzing error and energy growth,
and various test cases on compressible Euler's equations.

A subcell based shock capturing blending scheme was introduced for LWFR based
on [90]. The idea was to construct a robust low order scheme on subcells and blend it
with the high order LWFR scheme using a smoothness indicator. To enhance accuracy,
we used Gauss-Legendre solution points and performed MUSCL-Hancock reconstruc-
tion on the subcells. The MUSCL-Hancock reconstruction was only possible due to the
single stage nature of LWFR. Since the subcells of the blending scheme were inher-
ently non-cell centred, the MUSCL-Hancock scheme was extended to non-cell centred
grids along with the proof of [26] for admissibility preservation. The subcell structure
was exploited to obtain a provably admissibility preserving LWFR scheme by careful
construction of the blended numerical flux at the element interfaces. The procedure
for enforcing admissibility only requires the user to specify what the admissibility
constraints of the equation are, and the process is problem independent beyond that.
The numerical experiments were made on compressible Euler's equations verifying the
enhancement of accuracy and admissibility preservation. In particular, the experiments
revealed that the MUSCL-Hancock blending scheme was more accurate than the first
order blending scheme and that LWFR was able to simulate difficult tests for admis-
sibility like a Mach 2000 astrophysical jet and strong Sedov's blast waves.

A generalized framework for admissibility preservation was introduced by per-
forming a cell average decomposition followed by flux limiting, extending the positivity
limiter of Zhang and Shu to Lax-Wendroff schemes. The scheme was extended to
handle source terms by constructing time average source terms. Provable admissi-
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bility was also obtained for the extension by introducing a limiter for the time average
sources. The scheme with source terms was validated using the ten moment problem
of gas dynamics with tests for accuracy and robustness.

The multiderivative Runge-Kutta (MDRK) method of Li and Du [119] was written
as an evolution involving time average fluxes in both stages. This allowed us to apply
approximate Lax-Wendroff procedure to each stage and obtain an MDRK scheme in
Flux Reconstruction framework. The key developments made for LWFR, namely D2
dissipation, EA scheme and blending limiter were applied to each stage. This gave
us an MDRK scheme with improved stability, robustness and provable admissibility
preservation. The scheme was validated on the modern test suite of [132] for high order
methods.

The LWFR scheme was extended to handle body-fitted, adaptively refined curvi-
linear meshes. The curvilinear grids were defined by a reference map for each element
which was used to apply the Lax-Wendroff procedure in reference coordinates. The
adaptively refined mesh was allowed to be nonconformal and Mortar element method
for LWFR was developed to obtain a scheme that was conservative, admissibility and
free stream preserving. A Fourier stability analysis does not apply to such meshes and
hence an error based time stepping method was developed for LWFR. A performance
comparison between error based time stepping and CFL based time was made and, even
with less fine tuning, the error based time stepping gave superior performance. The
extension is validated by performing tests for Euler's equations on curvilinear grids.

The scheme was also extended to second order equations in conservative form by
using the BR1 scheme, along with capability to handle curvilinear meshes and error
based time stepping. The extension is validated with convergence analysis and various
standard tests for Navier-Stokes equations like lid driven cavity and flow over cylinder
and airfoil.

10.1. Future scope

There are several extensions possible for this work:

1. This work is restricted to partial differential equations in conservative form.
There are many practical hyperbolic problems like shear shallow water equations
which contain non-conservative products and are usually solved with path con-
servative schemes that satisfy generalized Rankine-Hugoniot conditions. There
are already Runge-Kutta Discontinuous Galerkin methods that can solve non-
conservative hyperbolic equations and thus development of high order Lax-
Wendroff schemes for such problems will be an important area of research.
Flux reconstruction cannot be applied to such systems but we can possibly
use correction functions gL; gR to obtain a quadrature free scheme.

2. The LWFR scheme has been developed to explicitly handle source terms while
maintaining high order accuracy. This explicit treatment imposes additional
conditions on time step size for stability of the scheme. Stiff source terms are
those which impose a time step restriction that is more severe than the CFL
restriction from the wave speeds. They occur in a variety of problems like those
involving chemical reactions. The time step restriction by the source terms can
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be avoided by adding local implicitness to the source terms. This is the idea of
IMEX schemes. The development of such locally implicit solvers for LWFR on
source terms that maintain high order accuracy will be an important area of
research.

3. We made a comparison of accuracy between Gauss-Legendre (GL) and Gauss-
Legendre-Lobatto (GLL) solution points which showed us the superior accuracy
of the former. Another accuracy improvement that we could make was the
development of a blending scheme that performs MUSCL-Hancock reconstruc-
tion on subcells. These accuracy improvements were only applied to problems
on Cartesian meshes and their extension can be made to curvilinear meshes.

4. The multiderivative Runge-Kutta scheme in Flux Reconstruction form was only
developed for Cartesian meshes and its extension to adaptively refined curvi-
linear meshes with error based time stepping should be possible.

5. The subcell based blending limiter was developed to add dissipation to inviscid
problems. However, there are many advection-diffusion problems that require
additional dissipation especially for underresolved flows. Thus, it is practical
to develop a subcell based blending scheme for such problems. This involves
development of a low order scheme on subcells that can solve advection diffusion
equations.

6. The description of LWFR scheme on curvilinear grids was dimension indepen-
dent and can thus be applied to 3-D. However, its numerical validation with
practical problems to test accuracy, robustness and free stream conditions needs
to be performed.

7. This work most generally applies to quadrilateral meshes (with curved bound-
aries) even though triangular meshes are also attractive due to availability of
better mesh generation algorithms. Thus, the extension of LWFR to triangular
and hybrid meshes will be fruitful.

8. The numerical experimentation of LWFR for other models of interest like Rel-
ativistic Hydrodynamics (RHD), Magnetohydrodynamics (MHD), Relativistic
Magnetohydrodynamics (RMHD) will be worth exploring due to their practical
significance and need for admissibility preserving schemes like the ones devel-
oped in this work.





Appendix A

ADER-FR and LWFR for linear problems

A.1. Introduction

In addition to high order Lax-Wendroff schemes which have been studied in this thesis,
this appendix considers the family of Arbitrary high order schemes using DERivatives
(ADER) initially introduced by the idea of a generalized Riemann solver [178] but
later extended to Finite Volume / DG framework to obtain high order accuracy by
using a predictor-corrector approach [63]. The local evolution in ADER schemes is
performed by solving an element local implicit equation while the LW scheme uses an
explicit Taylor's expansion. In this work, we prove, for linear problems, the equivalence
of the ADER-DG scheme introduced in [63] with Lax-Wendroff FR (LWFR) using D2
dissipation numerical flux introduced in Chapter 4; the key observation used is that
the space time predictor polynomial can be explicitly determined for linear problems.
We remark that there are some works where both these ideas are considered as types
of ADER schemes. However, in this work, we refer to ADER schemes as those that use
a local implicit solver like in [63] while LW schemes as those that use a local Taylor's
expansion like in Chapter 4 and [137, 18]. The rest of this appendix is organized
as follows. In Section A.2, we review the ADER-DG scheme of [63] for 1-D scalar
conservation laws and cast it in an FR framework for simplicity of the proof. In
Section A.3, we show the equivalence of ADER-FR scheme and the LWFR scheme
with D2 dissipation flux of Chapter 4 for linear problems. In Section A.4, we verify
the equivalence numerically and draw conclusions in Section A.5.

A.2. ADER Discontinuous Galerkin and Flux
Reconstruction

The arguments in this work apply to linear conservation laws of any dimension but
for simplicity we restrict ourselves to 1-D linear scalar conservation law

ut+ f(u)x=0; f(u)= a u; a= const (A.1)

where u is some conserved quantity, together with some initial and boundary con-
ditions. In this work, we consider the ADER-DG framework of [63]. We will divide
the physical domain 
 into disjoint elements 
e, with 
e= [xe¡ 1

2

; xe+ 1

2

] and �xe=

xe+ 1

2

¡xe¡ 1

2

. The temporal discretization is performed by denoting the nth time interval

as [tn; tn+1] and �tn = tn+1¡ tn. Let us map all spatial and temporal elements to
reference elements 
e! [0; 1], [tn; tn+1]! [0; 1] by

x 7! �=
x¡xe¡ 1

2

�xe
; t 7! � =

t¡ tn
�tn

215



Thus, x; t are physical variables in space and time and �; � are the respective reference
variables. Inside each element, we approximate the solution as PN functions which are
polynomials of degreeN �0. For this, chooseN+1 distinct nodes f�igi=0N in [0;1] which
will be taken to be Gauss-Legendre (GL) or Gauss-Lobatto-Legendre (GLL) nodes,
and will also be referred to as solution points. There are associated quadrature weights
wj such that the quadrature rule is exact for polynomials of degree up to 2N +1 for
GL points and up to degree 2N ¡ 1 for GLL points. Note that the nodes and weights
we use are with respect to the interval [0; 1] whereas they are usually defined for the
interval [¡1;+1]. For constructing the space-time predictor, we use the same solution
points in time. The numerical solution inside an element 
e at t= tn is given by

x2
e: uh
n(�)=

X
p=0

N

ue;p `p(�)

where each `p is a Lagrange polynomial of degreeN in [0;1] defined to satisfy `q(�p)=�pq
for 0� p; q�N .

Predictor step. The predictor inside a space-time element is given by

(x; t)2
e� [tn; tn+1]: u~h(�; �)=
X
p;q=0

N

u~e;pq `p(�) `q(� ) (A.2)

Within each element 
e, we take a local space-time test function `pq

`pq(�; � )= `p(�) `q(� )

To compute the cell-local predictor, we multiply the conservation law (A.1) by `pq and
do an integration by parts in time

¡
Z
tn

tn+1Z

e

u~h @t `pq dxdt+
Z

e

u~h(�; 1) `pq dx¡
Z

e

uh
n(�) `pq dx

+

Z
tn

tn+1Z

e

(@x f~h) `pq dxdt=0

(A.3)

where f~h= au~h. The above system of equations (A.3) is solved for all u~e;pq (A.2).

Corrector step. Integrate (A.1) over the space-time element 
e� [tn; tn+1] with the
test function `p= `p(�) and perform an integration by parts in space to getZ


e

uh
n+1 `p dx =

Z

e

uh
n `p dx+

Z
tn

tn+1Z

e

f~h @x `pdx dt

¡`p(1)
Z
tn

tn+1

fe+ 1

2

(u~h(t)) dt+ `p(0)

Z
tn

tn+1

fe¡ 1

2

(u~h(t))dt

(A.4)

where, for the linear case, fe+ 1

2

(u~h(t)) is the upwind flux

fe+ 1

2

(u~h(t))=
a
2

�
u~h(xe+ 1

2

¡ ; t)+u~h(xe+ 1

2

+ ; t)
�
¡ jaj

2

�
u~h(xe+ 1

2

+ ; t)¡u~h(xe+ 1

2

¡ ; t)
�

(A.5)
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The complete numerical scheme is given by space-time quadrature on (A.4) at the
solution points. By linearity of the flux, quadrature on the flux term in (A.4) is exact
as we use GL / GLL quadrature points and can thus perform another integration by
parts in space to write

Z

e

uh
n+1 `p dx =

Z

e

uh
n `p dx¡

Z
tn

tn+1Z

e

(@x f~h) `p dx dt

¡`p(1)
Z
tn

tn+1

(fe+ 1

2

(u~h(t))¡ f~h(1; t)) dt

+`p(0)

Z
tn

tn+1

(fe¡ 1

2

(u~h(t))¡ f~h(0; t)) dt

Performing quadrature in space at solution points gives

up
n+1 = up

n¡

"
@x

Z
tn

tn+1

f~h(t)dt

#
p

¡ `p(1)
�xewp

Z
tn

tn+1�
fe+ 1

2

(u~h(t))¡ f~h(1; t)
�
dt

+
`p(0)
�xewp

Z
tn

tn+1�
fe¡ 1

2

(u~h(t))¡ f~h(0; t)
�
dt

We choose correction functions gL; gR2PN+1 to be gRadau (3.19) if the solution points are
GL points and g2 (3.20) if solution points are GLL. Then, by the identities (Appendix B)

gR
0 (�p)= `p(1)/wp; gL

0 (�p)=¡`p(0)/wp

and thus the correction step can be written in the FR form as

up
n+1=up

n¡�tn @xF~h(�p) (A.6)

where we define

F~h(�) =
1
�tn

Z
tn

tn+1

f~h(�; t) dt

+
1
�tn

Z
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tn+1h
gR(�)
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1
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Z
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gL(�)

�
fe¡ 1
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(A.7)

which is the ADER time-averaged flux corrected by FR. The gL; gR satisfy gL(0) =
gR(1)= 1; gL(1)= gR(0)= 0 so that

F~h(0)=
1
�tn

Z
tn

tn+1

fe¡ 1

2

(u~h(t)) dt; F~h(1)=
1
�tn

Z
tn

tn+1

fe+ 1

2

(u~h(t)) dt
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making F~h a globally continuous flux approximation. The equations (A.3, A.6, A.7)
describe the ADER-FR scheme.

A.3. Equivalence

Since f(u)= a u in (A.1), the numerical flux function is linear and thus the corrected
ADER time-averaged flux of (A.7) can be written as

F~h(�) =
1
�tn

Z
tn

tn+1

a u~h(�; t) dt

+gR(�)

"
fe+ 1

2

 
1
�tn

Z
tn

tn+1

u~h(t) dt

!
¡ 1
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Z
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a u~h(1; t)dt

#

+gL(�)

"
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2

 
1
�tn

Z
tn

tn+1

u~h(t)dt

!
¡ 1
�tn

Z
tn

tn+1

a u~h(0; t)dt

# (A.8)

We will prove equivalence assuming that both schemes have the same solution at time
t= tn. Now, by (4.4), Lax-Wendroff Flux Reconstruction (LWFR) in an element can
be written as

up
n+1=up

n¡�tn @xFh(�p) (A.9)

where Fh is the continuous LW time averaged flux

Fh(�)=Fh
�(�)+ gR(�) [Fe+ 1

2

¡Fh�(1)]+ gL(�) [Fe¡ 1

2

¡Fh�(0)] (A.10)

and Fh
� is the discontinuous time averaged flux computed by the approximate Lax-

Wendroff procedure, described in Section 4.2.4, [208, 34], which gives the following for
linear flux

Fh
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X
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N
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n (A.11)

where Uhn is the approximate time averaged solution, and all spatial derivatives are
computed as local polynomial derivatives. The numerical flux with D2 dissipation
introduced in (4.11) is given by
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(A.12)
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where fe+ 1

2

(Uh
n) is as defined in (A.5). Thus, the time averaged flux (A.10) in LWFR

scheme (A.9) can be written as

Fh(�)= aUh
n(�)+ gR(�) [fe+ 1

2

(Uh
n)¡Uhn(1)]+ gL(�) [fe¡ 1

2

(Uh
n)¡Uhn(0)] (A.13)

Remark A.1. The D1 dissipation numerical flux, as termed in Chapter 4, was used
in earlier works like [137] and is given by
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The D2 flux (A.12) enhances the Fourier CFL stability limit (Section 4.4). The equiv-
alence between LW and ADER only holds with the D2 dissipation.

Looking at (A.6, A.9), to prove the claimed equivalence, we need to show that (A.8)
and (A.13) are the same, which will be true if we show that the time averaged solution
Uh
n defined in (A.11) is given by

Uh
n(�)=

1
�tn

Z
tn

tn+1

u~h(�; t) dt (A.15)

For simplicity of explanation, extend the cell local polynomial x 7!
P

p=0

N
up
e `p(�(x)) as

a polynomial in whole of R, now denoted uen. Then, defined in physical coordinates, (x;
t) 7!ue

n (x¡a (t¡ tn)) is a degree N space-time polynomial which satisfies the predictor
equation (A.3) for f(u)= a u. Since the predictor equation has a unique solution [68,
95], the solution of (A.3) is indeed given in physical coordinates as

u~h(x; t)=ue
n (x¡ a (t¡ tn)); x2
e (A.16)

Thus, we have @tu~h=¡a @xu~h and u~hjt=tn;x2
e=uen= uh
n which we will now exploit to

obtain (A.15). Since u~h is a degree N polynomial, its Taylor's expansion gives

u~h(�; t) =
X
k=0

N
(t¡ tn)k

k!
@t
ku~h(�; tn)

=
X
k=0

N
(¡a (t¡ tn))k

k!
@x
ku~h(�; tn)

=
X
k=0

N
(¡a (t¡ tn))k

k!
@x
kuh

n (A:16)

=) 1
�tn

Z
tn

tn+1

u~h(�; t) dt =
X
k=0

N
(¡a�t)k
(k+1)!

@x
kuh

n=Uh
n (A:11)

Thus, we have obtained (A.15) proving equivalence of the two schemes.
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Remark A.2. The above steps are not valid for a non-linear flux because the identity
u~t=¡f~x need not hold at t= tn.

A.4. Numerical validation

The ADER-FR scheme described in Section A.2 is implemented, tested and validated
for general scalar conservation laws like Burgers' equations with smooth solutions. For
numerical validation of equivalence, the Lax-Wendroff scheme with D1, D2 (A.14, A.12)
dissipation (called LW-D1, LW-D2) and ADER scheme are tested for scalar linear
advection equation (A.1) with a = 5 and wave packet initial condition u(x; 0) =
e¡10x

2 sin (10 � x) on domain [¡1; 1] with periodic and Dirichlet boundary conditions
for degrees N =1; 2; 3. The non-periodic boundaries for LWFR are treated as in Sec-
tion 4.5. The Radau correction functions [94] and Gauss-Legendre solution points
are used in the results shown, although we have also tested other correction func-
tions and solution points where same behavior was seen. Each scheme uses the same
time step size, and is within the stability limit. The LW-D2 (A.12) and ADER schemes
are found to match to O(10¡14) in L1 norm, verifying equivalence. In Figure A.1, we
show the L2 error kuh¡uexactk2 versus time plot for LW-D1, LW-D2 (A.14, A.12) and
the ADER scheme for periodic (Figure A.1a, b, c) and non-periodic (Figure A.1d, e, f)
boundaries. Since the ADER and LW-D2 schemes are equivalent, we see their L2

error curves overlap, while for D1 dissipation, we see differences of up to O(10¡3)
for both periodic and non-periodic boundaries. Thus, equivalence holds precisely with
the D2 dissipation. The code used to generate these results is available online at [7].
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Figure A.1. L2 error kuh¡uexactk2 versus time for wave packet test for different polynomial
degrees with 240 degrees of freedom. Periodic : (a) N =1, (b) N =2, (c) N =3. Non-periodic :
(d) N =1, (e) N =2, (f) N =3
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A.5. Conclusions

This appendix proves linear equivalence of high order ADER and Lax-Wendroff (LW)
schemes in Discontinuous Galerkin / Flux Reconstruction framework when the numer-
ical flux in LW is computed using the D2 dissipation introduced in Chapter 4. This
is consistent with the Fourier stability analysis performed in Section 4.4 where it was
observed that the CFL numbers of LWFR scheme with D2 dissipation are the same as
those of ADER-DG schemes obtained in [63, 76]. The equivalence was also numerically
validated for a wave packet test. The crucial observation needed for the proof is that
the solution of the predictor equation of ADER scheme has the same expression as
exact solution of the linear problem. Thus, this work relates two single stage methods
which are based on very different ideas and is thus a contribution to our understanding
of these numerical schemes. A natural but important research question for further
comparison of these two schemes is whether it can be proven that they agree up to
optimal order of accuracy for smooth solutions, which is numerically observed.
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Appendix B

Equivalence of DG and FR

As proven in [94, 127], the Discontinuous Galerkin (DG) method can be cast in a Flux
Reconstruction (FR) framework when Gauss-Legendre or Gauss-Legendre-Lobatto
points are used as solution and quadrature points. The same is proven here for the gen-
eral case of curvilinear grids in part to justify the FR formulation in Section 8.3.1. The
proof is provided here for Runge-Kutta Flux Reconstruction for simplicity although
the same arguments apply for Lax-Wendroff Flux Reconstruction. That is, following
the ideas in this appendix and Section 8.3.2, a Lax-Wendroff Discontinuous Galerkin
method on curvilinear grids can be defined which will be equivalent to the Lax-Wen-
droff Flux Reconstruction method of Chapter 8.

B.1. Discontinuous Galerkin on curvilinear grids

Consider the degree N Lagrange polynomial basis f`pg on the reference cell 
o=[¡1;
1]d (8.6). Let u�; f~� be the degree N approximate solution and contravariant flux,
defined in (8.15, 8.17) respectively. The DG scheme can either be formulated for the
transformed PDE (8.12) or weak formulation can be constructed for the conservation
law in the physical space (3.1) and transformed to the reference cell. It is easy to see
that the two are equivalent, and we will only show the DG scheme for the transformed
PDE (8.12).

We will show that both can be formulated in a way that the obtained schemes are
equivalent. We first derive the DG scheme for the transformed conservation law. The
first step is to multiply the transformed conservation law (8.12) with a test function
' which is a degree N polynomial in reference spaceZ


o

J
@ue

�

@ t
'd�+

Z

o

'r� � f~e� d�=0

Performing a formal integration by parts to derive the DG scheme givesZ

o

J
@ue

�

@ t
'(�) d�¡

Z

o

f~e
� � (r� ') d�

+
X
i=1

d
"Z

@
o;i
L

(f~e � n̂L;i)� `pdS�+
Z
@
o;i

R

(f~e � n̂R;i)� `pdS�

#
=0

(B.1)
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where i denotes the coordinate direction and s denotes the side fL;Rg, @
o;iR denotes
the face where reference outward normal is n̂R;i=ei and @
o;iL has outward unit normal
n̂L;i=¡n̂R;i. The face of element e in a direction i on the side s will be referred to as
the face (s; i) and (f~e � n̂s;i)� denotes the numerical flux. The numerical flux is usually
taken to be Rusanov's flux [152] in this work which we discussed in (8.19).

B.2. Equivalence with Flux Reconstruction

We derive the collocation based Flux Reconstruction [94] scheme directly from the DG
scheme. For the multi-indices p=(pi)i=1d where pi2f0;1 : : : ;N g, take the test function
to be

`p(�)=
Y
i=1

d

`pi(�
i)

so that the DG scheme (B.1) becomesZ

o

J
@ue

�

@ t
`pd�¡

Z

o

f~e
� � (r� `p) d�

+
X
i=1

d
"Z

@
o;i
L

(f~e
� � n̂L;i)� `pdS�+

Z
@
o;i

R

(f~e
� � n̂R;i)� `pdS�

#
=0

(B.2)

The scheme in (B.2) requires quadrature to be implemented; for equivalence with
Flux Reconstruction, quadrature points are taken to be the same as solution points.
Integration by parts can be performed if the volume integral with flux is exact. This
will be true if we use Gauss-Legendre (GL) quadrature points (integrals will be exact)
or Gauss-Legendre-Lobatto (GLL) quadrature points (integrals will be exact along the
direction of the derivative, also used in [108]). Thus, (B.2) is equivalent to the strong
form [108]Z


o

J
@ue

�

@ t
`p d�+

Z

o

(r� � f~e�) `p d�

+
X
i=1

d
"Z

@
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((f~e � n̂R;i)�¡ f~e� � n̂R;i) `pdS�+
Z
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o;i

L

((f~e � n̂L;i)�¡ f~e� � n̂L;i) `p dS�

#
=0

Recall that the solution points are given by f�p= (�pi)i=1
d ; pi=0; : : : ; N g. For a fixed

p, we denote the product of quadrature weights in each coordinate direction as wp :=Q
i=1

d
wpi and the solution point with index suppressed as � := �p. Then, as in Chapter 8,

we denote �iS (Figure 8.1) as projection of � to the face S = L; R in the ith direc-
tion (8.16). Then, performing quadrature at solution points will give us the following
collocation scheme at the fixed �= �p

J
due;p

�

dt
wp+r� � f~e�(�p)wp

+
wp

wpi

X
i=1

d

((f~e � n̂R;i)�¡ f~e� � n̂R;i)(�iR) `pi(1)+ ((f~e � n̂L;i)�¡ f~e� � n̂L;i)(�iL) `pi(¡1)=0
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where (f~e � n̂s;i)�(�is) and f~e� � n̂s;i(�is) denote numerical flux and physical flux at inter-
face solution point �is. Dividing by Jwp gives

due;p
�

dt
+
1
J
r� � f~e�(�p)

+
1
J

X
i=1

d

((f~e � n̂R;i)�¡ f~e� � n̂R;i)(�iR)
`pi(1)
wpi

¡ ((f~e � n̂L;i)�¡ f~e� � n̂L;i)(�iL)
`pi(¡1)
wpi

=0

(B.3)

The equivalence of FR and DG for choices of different solution points and correction
functions has been studied in [94, 127]. We use the following identities whose proofs
are based on properties of special polynomials observed in [94] (see Appendix B.2.1)
which generalize the proofs of equivalence in [94, 127]

`pi(¡1)
wpi

;
`pi(1)
wpi

=

(
¡gRadau;L0 (�pi); gRadau;R

0 (�pi); GL solution points and quadrature
¡g2;L0 (�pi); g2;R

0 (�pi); GLL solution points and quadrature

(B.4)

The gRadau; g2 are FR correction functions introduced in [94] and their explicit expres-
sions are (B.9, B.16)B.1. By (B.4), we can choose the corrector functions gL; gR
corresponding to the solution points so that (B.3) can be written as

due;p
�

dt
+
1
J
r� � f~e�(�p)

+
1
J

X
i=1

d

((f~e � n̂R;i)�¡ f~e� � n̂R;i)(�iR) gR0 (�pi)+ ((f~e � n̂L;i)�¡ f~e� � n̂L;i)(�iL) gL0 (�pi)=0

(B.5)

This is the same explicit form of FR as in (8.22), proving the equivalence between FR
and DG schemes.

B.2.1. Corrector function identites

In this section, we prove the following for 0� p�N

`p(¡1)
wp

;
`p(1)
wp

=

(
¡gRadau;L0 (�p); gRadau;R

0 (�p); (�p; wp) areGL solution; quadrature points
¡g2;L0 (�p); g2;R

0 (�p); (�p; wp) areGLL solution; quadrature points

(B.6)

B.1. The gRadau and g2 correction function expressions of (B.9, B.16) are defined for the reference interval
[¡1; 1] and are thus different from those in (3.19, 3.20) defined for reference interval [0; 1].
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We first prove it for Gauss-Legendre solution points, with the Radau correction func-
tion. Since degree N Gauss-Legendre solution points are the N +1 zeros of the degree
N+1 Legendre polynomial LN+1 where we make the normalization choice LN+1(1)=1,
the Lagrange polynomials corresponding to Gauss-Legendre points are given by

`j(�)=
LN+1(�)

(�¡ �j)LN+1
0 (�j)

; 0� j �N (B.7)

The quadrature weights are

wj=
2

(1¡ �j2) [LN+1
0 (�j)]2

; 0� j �N (B.8)

The Radau correction functions are

gL(�)=RN+1;R(�); gR(�)= gL(¡�)=RN+1;L(�) (B.9)

where RN+1;R is the right Radau polynomial characterized as the polynomial perpen-
dicular to PN¡1 and satisfying RN+1;R(¡1)= 1, RN+1;R(1)= 0. The right, left Radau
polynomials are explicitly given by

RN+1;R=
(¡1)N+1

2
(LN+1¡LN); RN+1;L=RN+1;R(¡�)=

1
2
(LN +LN+1) (B.10)

We will also be using the identities (8.5.7) of Hildebrand [91]

(1¡ �2)LN0 (�) = ¡N�LN(�)+NLN¡1(�) (B.11)
(1¡ �2)LN0 (�) = (N +1) �LN(�)¡ (N +1)LN+1(�) (B.12)

Now, using LN+1(¡1)= (¡1)N+1, we get from (B.7, B.8)

¡`j(¡1)
wj

=
1
2
(¡1)N (�j¡ 1)LN+1

0 (�j) (B.13)

Then, using (B.10, B.11) gives

LN
0 (�j)=

(N +1) �jLN(�j)

1¡ �j2
; LN+1

0 (�j)=
(N +1)LN(�j)

1¡ �j2
(B.14)

and thus, using (B.13, B.14), Radau correction function (B.9) satisfies

gL
0 (�j)+

`j(¡1)
wj

=
(¡1)N
2

(LN
0 (�j)¡ �jLN+1

0 (�j))= 0;

and we get the claim (B.6) for Radau correction functions. We now prove the claim (B.6)
for g2 correction functions. Since GLL points include �1, the Lagrange polynomials
with GLL points satisfy

`p(¡1)
wp

=
�p0
wp
;

`p(1)
wp

=
�pN
wp

where �kl is the Dirac delta function. The quadrature weights corresponding to GLL
points are given by

wp=

8>><>>:
2

N (N +1)

1

[LN(�p)]2
if 0< p<N

2

N (N +1)
if p=0 or p=N

(B.15)
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The g2 correction functions are given by [94]

g2;L=
N

2N +1
RR;N+1+

N +1
2N +1

RR;N (B.16)

where RN are Radau polynomials (B.10). In Appendix E of [94], it is proven that g2;L
has extremums at all Lobatto points other than the left boundary, where it satisfies
by (B.15)

g2;L
0 (¡1)=¡1

2
N (N +1)=¡`0(¡1)

w0
giving our claim (B.6).

B.2 Equivalence with Flux Reconstruction 227





Appendix C

Equivalence with DFR

The direct flux reconstruction method does not require the choice of correction func-
tion. Following the ideas of [147], we will prove that the LWFR scheme using Gauss-
Legendre points and Radau correction function described in Section 4.2.2 is equivalent
to the LWDFR scheme described in Section 4.2.3, by showing that the bL; bR;D1 are
same for both.

Equivalence of bbbbbbbbbL We begin by proving the claim for bL. For the FR scheme, we
have

bLFR=

2664 gL
0 (�0)

���
gL
0 (�N)

3775
where gL is the Radau correction function and f�p; 0� p �N g are Gauss-Legendre
quadrature points on the interval [0; 1]. For the DFR scheme, we have

bLFR=

2664 ~̀¡1
0 (�0)

���
~̀¡1
0 (�N)

3775
where ~̀

p's are Lagrange polynomials associated to the points f�p;¡1� p �N + 1g
where �¡1=0 and �N+1=1. Since the N +1 zeros of LN+1 are also zeros of ~̀¡1 and
~̀¡1(0)= 1, ~̀¡1(1)= 0, we must have

~̀¡1(�)= (¡1)N (�¡ 1)LN+1 (2 �¡ 1)

To prove our claim, we need to prove

d
d�

(gL¡ ~̀¡1)(�p)= 0; p=0; 1; : : : ; N

i.e.,

LN
0 (2 �p¡ 1)¡LN+1(2 �p¡ 1)¡ (2 �p¡ 1)LN+1

0 (2 �p¡ 1)=0; p=0; 1; : : : ; N

To work in [¡1;1] which is the natural domain of Legendre polynomials, we define the
residual R(�)=LN

0 (�)¡LN+1(�)¡ �LN+1
0 (�) so we have to show

R(�p)= 0; p=0; 1; : : : ; N

where �p= 2 �p¡ 1 are the Gauss-Legendre points in [¡1;+1]. Using the recurrence
relations

(1¡ �2)LN+1
0 (�) = (N +1) [LN(�)¡ �LN+1(�)]
LN
0 (�) = (N +1) [�LN(�)¡LN+1(�)]
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we get

R(�)=¡(N +2)LN+1(�)

proving that R(�p)=0 for all p=0;1; : : : ;N since these �p are the zeros of LN+1. Thus,
bLFR=bLDFR. The claim for right correction follows analogously.

Equivalence of DDDDDDDDD1. Writing bL=bLFR=bLDFR and bR=bRFR=bRDFR, proving that the
D1 matrices are same for both schemes is equivalent to showing that

D=D1
DFR+bL VL

>+bR VR
>

where D is the differentiation matrix on Gauss-Legendre points. Further, to show that
these two matrices are equal, it is enough to prove that their action on a set of N +1
linearly independent column vectors is the same. For this, we consider an arbitrary
polynomial p(�) of degree less than or equal to N , and let p=[p(�0); � � �; p(�N)]> and
p 0=[p0(�0); � � �; p0(�N)]>=Dp. We have

bLVL
>p=bL

X
p=0

N

p(�p) `p(0)= bLp(0)= p(0)[ ~̀¡1
0 (�0); � � �; ~̀¡10 (�N)]>

and

bRVR
>p=bR

X
p=0

N

p(�p) `p(1)= bRp(1)= p(1)[ ~̀N+1
0 (�0); � � �; ~̀N+1

0 (�N)]>

As p is a polynomial of degree less than or equal to N , we can write

p(�)=
X
p=¡1

N+1

p(�p) ~̀p(�); p0(�)=
X
p=¡1

N+1

p(�p) ~̀p
0(�)

We get
(D1

DFR+bLVL
>+bRVR

>)p

=

2666666666666664

X
q=0

N

p(�0) ~̀q
0(�0)

���X
q=0

N

p(�N) ~̀q
0(�N)

3777777777777775+
2664 p(0) ~̀¡1

0 (�0)

���
p(0) ~̀¡1

0 (�N)

3775+
2664 p(1) ~̀N+1

0 (�0)

���
p(1) ~̀N+1

0 (�N)

3775
= p 0=Dp

for all p2RN+1, which proves the claim.
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Appendix D
Some numerical fluxes

We describe the procedure to compute the numerical flux for systems at one single
face e+ 1

2
. The numerical flux for LWFR is computed using the trace values of the

solution Ul=Ue+
1

2

¡ , Ur=Ue+
1

2

+ and time average fluxes Fl=Fe+ 1

2

¡ , Fr=Fe+ 1

2

+ . Here Ul;

Ur may be the solution values at time tn for dissipation model D1 or the time average
value in case of dissipation model D2. Further, we use the cell average values at time
t= tn, U�l=u�en, U�r=u�e+1n , to compute the dissipation coefficients. In the following sub-
sections, we described different numerical fluxes which are functions of the quantities:
U�l;U�r;Ul;Ur;Fl;Fr.

D.1. Rusanov flux
The Rusanov flux [152] is a local version of the Lax-Friedrichs flux with the wave speed
being estimated locally. The flux approximation is given by

F (Ul;Ur;Fl;Fr;U�l;U�r)=
1
2
(Fl+Fr)¡

1
2
� (Ur¡Ul)

where � is an estimate of the maximum wave speed in the two states

�=max f�(U�l); �(U�r)g

and � denotes the spectral radius of the flux jacobian, f 0(u).

D.2. Roe flux
The Roe flux [146] is built on a local linearization of the hyperbolic conservation law
and solving the Riemann problem exactly. The Roe flux is given by

F (Ul;Ur;Fl;Fr;U�l;U�r)=
1
2
(Fl+Fr)¡

1
2
R j�jL (Ur¡Ul)

where R;�; L are the right eigenvector matrix, diagonal matrix of eigenvalues and left
eigenvector matrix corresponding to the flux Jacobian at the face, computed using the
Roe average based on cell average values U�l, U�r.

D.3. HLL flux
The HLL Riemann solver [89] models the solution of the Riemann problem using
only the slowest and fastest waves with an intermediate state. Let the slowest and
fastest speeds, denoted by Sl<Sr, be assumed to be known. We can determine the
intermediate state and flux by writing the jump conditions across the two waves,

F�¡Fl=Sl (U�¡Ul); Fr¡F�=Sr (Ur¡U�)
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whose solution is given by

U�=
SrUr¡SlUl¡ (Fr¡Fl)

Sr¡Sl
; F�=

SrFl¡SlFr+SlSr (Ur¡Ul)
Sr¡Sl

The numerical flux is given by

F (Ul;Ur;Fl;Fr;U�l;U�r)=

8>><>>:
Fl; Sl> 0
Fr; Sr< 0
F�; otherwise

The speeds Sl; Sr are computed using the cell average values U�l, U�r and there are
various methods available [71, 23, 181, 83, 179]. In the numerical tests, we use the
method from [181] to estimate the slowest and fastest speeds.

D.4. HLLC flux

We describe the HLLC flux for 1-D Compressible Euler's equations (4.16). The HLLC
Riemann solver [180] includes the contact wave by using a three wave model with three
wave speeds Sl<S�<Sr and two intermediate states U�l and U�r. The contact wave
is the middle wave with speed S�. The pressure and normal velocity are continuous
across the contact wave, i.e.,

p�l= p�r= p�; u�l=u�r=u�

and the speed of the contact wave coincides with the intermediate velocity S�= u�.
The jump condition across the Sl and Sr wave reads as

F��¡F�=S� (U��¡U�); �= l; r

In the full form, the jump conditions are given by2664 ���u�
p�+ ���u�

2

(E��+ p�)u�

3775¡S�
24 ���
���u�
E��

35=
2664 F�

�

F�
m

F�
E

3775¡S�
24 ��
m�

E�

35
Using this expression we determine the unknown variables ��; u�; p� and E�. From the
first jump condition we get

���=
S� ��¡F��

S�¡u�
From the second equation we write the intermediate pressure

p�=F�
m¡S�m�+ ���u� (S�¡u�)=F�

m¡S�m�+u� (S� ��¡F��) (D.1)

We get two estimates of pressure p� from the l; r states, and equating these two values

Fl
m¡Slml+u� (Sl �l¡Fl

�) = Fr
m¡Srmr+u� (Sr �r¡Fr

�)

we obtain the intermediate velocity

u�=
(Srmr¡Frm)¡ (Slml¡Flm)
(Sr �r¡Fr�)¡ (Sl �l¡Fl

�)
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The intermediate pressure can be computed from (D.1) or from the following expression

p�=
(Srmr¡Frm) (Sl �l¡Fl

�)¡ (Slml¡Flm) (Sr �r¡Fr�)
(Sr �r¡Fr�)¡ (Sl �l¡Fl

�)

From the last jump condition we obtain

E��=
p�u�+S�E�¡F�E

S�¡u�
The flux is now given by

F (Ul;Ur;Fl;Fr;U�l;U�r)=

8>>>>>><>>>>>>:
Fl; Sl> 0
Fr; Sr< 0
F�l=Fl+Sl (U�l¡Ul); Sl< 0<u�
F�r=Fr+Sr (U�r¡Ur); u�< 0<Sr

where the wave speeds Sl and Sr are computed using the cell average values U�l;U�r.
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Appendix E

Efficient local differential operators

In our implementation of Lax-Wendroff Flux Reconstruction scheme, we use differenti-
ation matrices for computing polynomial derivatives within an element. For instance,
the matrix D defined in (3.5) is used to compute the local derivatives in the approxi-
mate Lax-Wendroff procedure (Section 4.2.4) and the matrix D1 is used for computing
the derivatives of the continuous flux (4.9, 4.24). This appendix describes how these
derivative operators are applied in a cache blocking way [3] that avoids writing to
memory (RAM). The approach is also used in Trixi.jl [141] and PyFR [195, 3].

We describe the process when dealing with the 1-D system of conservation laws (3.1)
with NVAR variables solved on a grid of ncell cells and polynomial degree N . Let
u be the solution array of size (NVAR, N +1, ncell) containing Float64 values. The
approximate Lax-Wendroff procedure (Section 4.2.4) and derivative of continuous
flux (4.9, 4.24) require us to loop over the ncell cells and compute the flux derivative
within each cell. A natural approach to compute the flux derivatives will be to compute
fluxes at all solution points, store them in an array and apply the differentiation matrix.
This is performed in the pseudocode below where f is an array of size (NVAR, N +1).
for cell in eachelement(grid) # Cell loop

for i in eachnode(basis) # DoF loop
f[:,i] = flux(u[:,i,cell])

end
BLAS.mul(D, f, fder) # fder = D * f

end

This issue with this approach is that storing the flux in an array requires writing
to memory (RAM). The idea of cache blocking is to compute the flux derivative
without writing the flux to memory. This is ensured by computing the flux derivative
by summing contributions to flux derivative from all solution points. To be precise,
during the loop over solution points, we simply compute the flux at that solution point,
compute its contribution to the derivative, and add it to target fder. At each solution
point, the flux only consists of NVAR values of Float64 type. The NVAR is relatively
small (3 for 1-D Euler's equations (4.16), 6 for the ten moment problem (6.17)) and
the code is set up to ensure that NVAR is known at the time of compilation. Thus, the
NVAR flux values will be stored in the cache.

We now discuss how cache blocking is performed in practice. The implementation
will typically be dependent on the programming language and we only describe it
for Julia [29]. We first describe how to ensure that NVAR is known at the time of
compilation.
abstract type AbstractEquations{NDIMS, NVAR} end
nvariables(::AbstractEquations{NDIMS,NVAR}) where {NDIMS, NVAR} = NVAR
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The type AbstractEquations contains the number of dimensions NDIMS and number of
variables NVAR. Since types are resolved at the time of compilation, these values will be
known to the compiler and can be queried by the function nvariables. This abstract
type is then used in a particular system of equations, like 1-D Euler's equations, as
follows.
struct Euler1D <: AbstractEquations{1, 3}

��� # contains information like gas constant gamma
���

end
Thus, any instantiation of Euler1D will know NDIMS=1 and NVAR=3 so that these values
are known at the time of compilation. If eq is an instantiation of such a struct, the
following function makes use of this compile time informationE.1.
function mul_add_to_node_vars!(u, factor, u_node, eq, indices)

for v in 1:nvariables(eq)
u[v, indices] = u[v, indices] + factor * u_node[v]

end
return nothing

end
In the slicing notation of python and fortran, this function performs u[:,indices]
+= u[:,indices] + factor * u_node but with the capability of performing the oper-
ation faster as it knows the size of each slice. The final ingredient we will be needing
in Julia is an array type that can store data in the cache. The array type we use
is SVector (static vector) from the Julia package StaticArrays.jl. The usage of
this package is recommended for arrays with less than 100 entries. To motivate the
usage of StaticArrays.jl, we first show a pseudocode for application of the D1matrix
on the flux (4.9, 4.24) in Algorithm E.1.
Algorithm E.1

Cache blocking flux differentiation
for cell in eachelement(grid) # Cell loop

for i in eachnode(basis) # DoF loop
u_node = get_node_vars(equations, u, i, cell)
f_node = flux(u_node)
for ix in eachnode(basis)

# Equivalent to fder[:,ix,i,cell] += D1[ix,i] * f_node
mul_add_to_node_vars!(eq, D1[ix,i], f_node, fder, ix, cell)

end
end

end
The function get_node_vars in Algorithm E.1 loads the NVAR variables at a solution
point into u_node of type SVector.
@inline function get_node_vars(u, eq, indices)

SVector(ntuple(@inline(v -> u[v, indices]), nvariables(eq)))
end

E.1. Julia uses a just-in-time compiler and we thus do not need to specify the types when defining a
function.
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The function is made to use the NVAR information known at the time of compilation
by using the nvariables function we described earlier. This leads to an SVector that
will be stored in the cache. Then, the flux computation can be performed without a
write to the memory, returning another SVector which will live in cache.
@inline function flux(u, eq::Euler1D)

rho, rho_v1, rho_e = u
v1 = rho_v1 / rho
p = (eq.gamma - 1) * (rho_e - 0.5 * rho_v1 * v1)
f1 = rho_v1
f2 = rho_v1 * v1 + p
f3 = (rho_e + p) * v1
return SVector(f1, f2, f3)

end
Once the flux at a solution point is computed, another loop over solution points is per-
formed in Algorithm E.1 to add its contribution to fder. The mul_add_to_node_vars!
function is used for efficient application of this operation. A minimal working example
of a code that involves writing to memory is provided at

https://github.com/Arpit-Babbar/dissertation/blob/main/memory_write.jl
Another code with cache blocking is provided here

https://github.com/Arpit-Babbar/dissertation/blob/main/cache_block.jl
The codes have benchmarking built into them that clearly shows the many factors

of improvement obtained by cache blocking. The figure E.1 illustrates cache blocking
where f~; u~ denote f_node, u_node respectively.

f 0 D1 f

uu~= Fluxff~

f~f~0 = �

Figure E.1. Cache blocking flux differentiation (illustration from [192]).
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Appendix F

Scaling limiter

In Chapters 5, 6, we developed Flux Reconstruction schemes that were admissibility
preserving in means (Definition 5.2). In this section, we review the scaling limiter
of [205] to use admissibility in means to obtain an admissibility preserving scheme
(Definition 5.1).

Consider the solution uhn at current time time level n. Within each element, uhn2PN
and since the scheme is admissibility preserving in means, we assume u�en2Uad for each
element e. We will iteratively correct all admissibility constraints fPkgk=1d (5.1). For
each constraint Pk, we find �k2 [0; 1] such that Pk((1¡ �k)u�en+ �kuhn)> 0 at the N +1
solution points and replace the polynomial uhn with (1¡�)u�en+�uhn. In case of concave
Pk, we choose �k to be

�k=min
�

min
0�p�N

�������� �p¡Pk(u�en)
Pk(ue;p

n )¡Pk(u�en)

��������; 1� (F.1)

If Pk is not concave, we solve a nonlinear equation to find the largest �k2 [0;1] satisfying

Pk((1¡ �k)u�en+ �kue;p
n )= �p; 0� p�N (F.2)

This procedure is performed for all k and the minimum is successively taken, as
described in Algorithm F.1.
Algorithm F.1

Scaling limiter
�=1
for k=1:K do

�k=
1

10 Pk(u�e
n)

Find �k by solving (F.2) or by using (F.1) if Pk is concave
� min (�k; �)

end for
The idea of choosing �k by solving (F.2) is to maintain the formal order of accuracy.

In [206, 125], it was shown that (F.2) maintains optimal order of accuracy for Com-
pressible Euler's equations (2.13) and Ten Moment problem (6.17) respectively. In [206,
125], the �k in (F.2) was found by solving a quadratic and cubic equation respectively.
In this work, we solve (F.2) by using a general iterative solver like Newton-Raphson
that can be used any choice of Pk.
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Appendix G

Admissibility of MUSCL-Hancock on gen-
eral grids

G.1. Introduction and notations

In this appendix, we prove Theorem 5.4 regarding admissibility of the MUSCL-Han-
cock scheme described in Section 5.4 on non-cell centred grids. These grids arise in the
subcell based blending scheme of Section 5.3.1 as we demand a conservative scheme.
The proof is provided here for general non-cell centred grids like in Figure G.1.

We now mention some notations that will be used in the proof. For the 1-D con-
servation law (3.1), define �(u1;u2) as

�(u1;u2)=max f�(f 0(u�)):u�=�u1+(1¡�)u2; 0��� 1g

where �(A) denotes the spectral radius of matrix A. For the 2-D hyperbolic conserva-
tion law

ut+ fx+ gy=0 (G.1)

where (f ; g) are Cartesian components of the flux vector; the wave speed estimates in
x; y directions are defined as follows

�x(u1;u2) = max f�(f 0(u�)):u�=�u1+(1¡�)u2; 0��� 1g
�y(u1;u2) = max f�(g 0(u�)):u�=�u1+(1¡�)u2; 0��� 1g

We assume that the admissibility set Uad of the conservation law is a convex subset of
Rp which can be written as (5.1). The following assumption is made concerning the
admissibility of first order finite volume scheme.

Admissibility of first order finite volume scheme. Under the time step restric-
tion

max
p

�t
�xp

�(up
n;up+1

n )� 1 (G.2)

the first order finite volume method

up
n+1=up

n¡ �t
�xp

(f(up
n;up+1

n )¡ f(up¡1n ;up
n))
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is admissibility preserving, i.e., upn2Uad for all p implies that up
n+12Uad for all p.

G.2. Review of MUSCL-Hancock scheme

Here we review the MUSCL-Hancock scheme for general uniform grids that need not
be cell-centered (Figure G.1) in the sense that

xp+ 1

2

¡ xp=/ xp¡xp¡ 1

2

; (G.3)

for some p where xp is the solution point in finite volume element (xp¡ 1

2

; xp+ 1

2

). The

grid used in the blending limiter (Figure 5.1) is a special case of (G.3).

xp

p−
1

2
p+

1

2

Figure G.1. Non-uniform, non-cell-centered finite volume grid

For the pth finite volume element (xp¡ 1

2

; xp+ 1

2

), the constant state is denoted upn and

the linear approximation will be denoted rpn(x). For conservative reconstructionG.1, the
linear reconstruction is given by

rp
n(x)=up

n+(x¡xp) �p; x2
¡
xp¡ 1

2

; xp+ 1

2

�
The values on left and right faces will be computed as

up
n;¡=up

n+(xp¡ 1

2

¡xp) �p; up
n;+=up+(xp+ 1

2

¡ xp) �p (G.4)

We use Taylor's expansion to evolve the solution to tn+
1

2
�t

up
n+

1

2
;¡

= up
n;¡¡ �t

2�xp
(f(up

n;+)¡ f(upn;¡))

up
n+

1

2
;+

= up
n;+¡ �t

2�xp
(f(up

n;+)¡ f(upn;¡))
(G.5)

where �xp= xp+ 1

2

¡ xp¡ 1

2

. The final update is performed by using an approximate

Riemann solver on the evolved quantities

up
n+1=up

n¡ �t
�xp

�
f
p+

1

2

n+
1

2¡ f
p¡ 1

2

n+
1

2

�
(G.6)

G.1. The reconstruction uses conservative variables and hence is termed conservative reconstruction . It
does not satisfy 1

�xp

R
x
p¡1

2

x
p+1

2rp(x) dx=up as the linear reconstruction rp is not centered at the mid point.
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where

f
p+

1

2

n+
1

2 = f
�
up
n+

1

2
;+
;up+1

n+
1

2
;¡
�

is some numerical flux function. The key idea of the proof is to write the evolution

up
n+

1

2
;�

from (G.5) as a convex combination of exact solution of some Riemann problem
and the final update up

n+1 from (G.6) as a convex combination of first order finite
volume updates on appropriately chosen subcells.

G.3. Primary generalization for proof

For the uniform, cell-centered case, Berthon [26] defined up
�;� to satisfy

1
2
up
n;¡+up

�;�+
1
2
up
n;+=2up

n;�

We generalize it for non-cell centered grids (G.3)

�¡up
n;¡+up

�;�+ �+up
n;+=2up

n;�

where

�¡=
xp+ 1

2

¡xp
xp+ 1

2

¡xp¡ 1

2

; �+=
xp¡xp¡ 1

2

xp+ 1

2

¡xp¡ 1

2

(G.7)

This choice was made to keep the natural extension of up
�;� in the conservative recon-

struction case:

up
�;�=up

n+2 (xp� 1

2

¡xp) �p

noting that up
n;� are given by (G.4).

G.4. Proving admissibility

The following lemma about conservation laws will be crucial in the proof.

Lemma G.1. Consider the 1-D Riemann problem

ut+ f(u)x=0

u(x; 0)=

�
ul; x< 0
ur; x> 0

in [¡h; h]� [0;�t] where
�t
h
�(ul;ur)� 1 (G.8)

Then, for all t��t,Z
¡h

h

u(x; t)dx=h (ul+ur)¡ t (f(ur)¡ f(ul))
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Proof. Integrate the conservation law over (¡h; 0)� (0; t)

0=

Z
¡h

0

u(x; t)dx¡hul+
Z
0

t

(f(u(0¡; t))¡ f(u(¡h; t)))dt

=

Z
¡h

0

u(x; t)dx¡hul+ t (f(u~(0¡))¡ f(ul))

where, by self-similarity of solution of Riemann problem, u~ is defined so that u(x;
t)=u~(x/t) and f(u(¡h; t))= f(ul) is obtained as waves do not reach x=¡h due to
the time restriction (G.8). Rewriting givesZ

¡h

0

u(x; t)dx=hul¡ t(f(u~(0¡)¡ f(ul))

Similarly, Z
0

h

u(x; t)dx=hur¡ t (f(ur)¡ f(u~(0+)))

If u~ is discontinuous at x= 0, by Rankine-Hugoniot conditions, we will have a sta-
tionary jump at x/t=0 and obtain f(u~(0+))= f(u~(0¡)). The same trivially holds if
u~ is continuous at x/t=0. Thus, we can sum the previous two identities to get (G.1). �

We will now give a criterion under which we can prove up
n+

1

2
;� 2 Uad, i.e., the

evolution step (G.5) preserves Uad.

Lemma G.2. Define �� by (G.7) and pick up
�;� to satisfy

�¡
2
up
n;¡+

1
2
up
�;�+

�+
2
up
n;+=up

n;� (G.9)

Assume up
n;�;up

�;�2Uad and the CFL restrictions

max
p

�t
�¡�xp

�(up
n;¡;up

�;�)� 1; max
p

�t
�+�xp

�(up
�;�;up

n;+)� 1 (G.10)

are satisfied. Then, up
n+

1

2
;�

given by the first step (G.5) of the MUSCL-Hancock scheme
is in Uad.

Proof. We will prove that up
n+

1

2
;+2Uad, and the proof for up

n+
1

2
;¡

shall follow similarly.

The key idea is to write up
n+

1

2
;�

as the exact solution of some Riemann problems. Define
uh(x; t): (xp¡ 1

2

; xp+ 1

2

)� (0;�t/2)!Uad to be the weak solution of the Cauchy problem

with initial data

uh(x; 0)=

8>>>>>><>>>>>>:
up
n;¡; if x2 (xp¡ 1

2

; xp¡1/4)

up
�;+; if x2 (xp¡1/4; xp+1/4)

up
n;+; if x2 (xp+1/4; xp+ 1

2

)
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where

xp¡ 1

4

=
1
2
(xp¡ 1

2

+x~p); xp+ 1

4

=
1
2
(x~p+xp+ 1

2

); x~p=xp¡ 1

2

+ �¡�xp

Under our time step restrictions (G.10), the solution uh at time �t

2
is made up of non-

interacting Riemann problems centered at xp� 1

4

, see Figure G.2. We take the projection

of uh(x;�t/2) on piecewise-constant functions

u~p
n+

1

2
;+
:=

1
�xp

Z
x
p¡1

2

x
p+

1

2uh
�
x;
�t
2

�
dx

Since we assumed that the conservation law preserves Uad, we get u~p
n+

1

2
;+2Uad. If we

prove u~p
n+

1

2
;+
=up

n+
1

2
;+
, we will have our claim. Applying Lemma G.1 to the two non-

interacting Riemann problems, we get

u
∗,+
pu

∗,+
p u

n,+
pu

n,−
p

xp+1/4xp−1/4

µ−∆xp µ+∆xp

∆t
2

x̃p
xp−1/2 xp+1/2

Figure G.2. Two non-interacting Riemann problems

u~p
n+

1

2
;+

=
1

�xp

0@Z
x
p¡1

2

x~p

uh
�
x;
�t
2

�
dx+

Z
x~p

x
p+

1

2uh
�
x;
�t
2

�
dx

1A
=

1
�xp

266664
x~p¡xp¡ 1

2

2
up
n;¡+

�xp
2

up
�;++

xp+ 1

2

¡x~p
2

up
n;+

¡�t
2
(f(up

n;+)¡ f(upn;¡))

377775
=

1
2
(�¡up

n;¡+up
�;++ �+up

n;+)¡ �t/2
�xp

(f(up
n;+)¡ f(upn;¡))

= up
n;+¡ �t/2

�xp
(f(up

n;+)¡ f(upn;¡)); using (G.9)

= up
n+

1

2
;+
; by (G.5)

This proves our claim. �

Now, we introduce a new variable up
n+

1

2
;�
defined as follows:

�¡up
n+

1

2
;¡
+up

n+
1

2
;�
+ �+up

n+
1

2
;+
=2up

n (G.11)
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Figure G.3. Finite volume evolution

As illustrated in Figure G.3, we evolve each state according to the associated first
order scheme to define the following

up
n+1;¡ = up

n+
1

2
;¡¡ �t

�¡�xp/2

�
f
�
up
n+

1

2
;¡
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2
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�
¡ f

�
up¡1
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1

2
;+
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;¡
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1

2
;�¡ �t
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�
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�
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�
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�� (G.12)

Recall that (G.6) is

up
n+1=up

n¡ �t
�xp

�
f
�
up
n+

1

2
;+
;up+1

n+
1

2
;¡
�
¡ f

�
up¡1
n+

1

2
;+
;up

n+
1

2
;¡
��

Using (G.11) and (G.12), we get

�¡
2
up
n+1;¡+

1
2
up
n+1;�+

�+
2
up
n+1;+=up

n+1

Thus, assuming up
n+

1

2
�
;up

n+
1

2
;�2Uad for all p, and since 1

2
�¡+

1

2
�+=1, we get up

n+12
Uad under the following time step restrictions arising from the assumed time step
requirement (G.2) for admissibility of the first order finite volume method
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(G.13)

This can be summarised in the following Lemma.

Lemma G.3. Assume that the states
n
up
n+

1

2
;�
o
p
,
n
up
n+

1

2
;�
o
p
belong to Uad, where up

n+
1

2
;�

is defined as in (G.11). Then, the updated solution up
n+1 of MUSCL-Hancock scheme

(G.4-G.6) is in Uad under the CFL conditions (G.13).
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Since Lemma G.2 states that up
n+

1

2
;� 2 Uad if up

�;� 2 Uad, the only new condition

pertains to up
n+

1

2
;�
. Our goal now is to understand this condition, and ultimately

prove that it follows from the requirement that up
�;� 2 Uad in case of conservative

reconstruction.

Recall that up
n+

1

2
;�
was defined by (G.11); expanding the definition of up

n+
1

2
;�

given
by (G.5) yields

up
n+

1

2
;�
=2up

n¡ (�¡upn;¡+ �+up
n;+)¡ �t

2�xp
(f(up

n;¡)¡ f(upn;+)) (G.14)

This identity (G.14) will be seen as an evolution update similar to (G.5) with up
n;+ and

up
n;¡ being swapped and upn replaced with 2upn¡ (�¡upn;¡+�+up

n;+). The admissibility

of up
n+

1

2
;�
will be studied by adapting the proof of admissibility for (G.5), accounting

for the differences in the case of (G.14). Define up
�;� so that

�¡
2
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n;¡+

1
2
up
�;�+

�+
2
up
n;+=2up

n¡ (�¡upn;¡+ �+up
n;+) (G.15)

i.e.,
up
�;�=4up

n¡ 3 (�¡upn;¡+ �+up
n;+) (G.16)

The following Lemma extends the proof of Lemma G.2 to obtain conditions for up
n+

1

2
;�2

Uad.

Lemma G.4. Assume that upn2Uad for all p. Consider the reconstructions up
n;� and

the up
�;� defined in (G.15). Assume up

n;�;up
�;�2Uad and the time step restrictions
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�t
�¡�xp

�(up
�;�;up

n;¡)� 1; max
p

�t
�+�xp

�(up
n;+;up

�;�)� 1 (G.17)

Then up
n+

1

2
;�2Uad.

Proof. We will use the identity which follows from (G.14, G.15)

up
n+

1

2
;�
=
�¡up

n;¡+up
�;�+ �+up

n;+

2
¡ �t
2�xp

(f(up
n;¡)¡ f(upn;+)) (G.18)

to fall back to previous case of Lemma G.2.
Define uh(x;t): (xp¡ 1

2

;xp+ 1

2

)�(0;�t/2)!Uad to be the weak solution of the Cauchy

problem with initial data

uh(x; 0)=

8>>>>>><>>>>>>:
up
n;+; if x2 (xp¡ 1

2

; xp¡1/4)

up
�;�; if x2 (xp¡ 1

4

; xp+1/4)

up
n;¡; if x2 (xp+ 1

4

; xp+ 1

2

)

where
xp¡ 1

4

=
1
2
(xp¡ 1

2

+xp); xp+ 1

4

=
1
2
(xp+xp+ 1

2

)

Note that we have already accounted for the swapped up
n;¡ and up

n;+ while defining
this initial condition, see Figure G.4.
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Under the assumed CFL conditions (G.17), the solution uh at time �t

2
is made up

of non-interacting Riemann problems centered at xp� 1

4

. Take the projection of uh(x;
t/2) on piecewise-constant functions

u~p
n+

1

2
;�
:=

1
�xp

Z
x
p¡1

2

x
p+

1

2uh
�
x;
�t
2

�
dx2Uad

u
∗,∗
pu

∗,∗
p u

n,−
pu

n,+
p

xp+1/4xp−1/4

µ+∆xp µ−∆xp

∆t
2

xpxp−1/2 xp+1/2

Figure G.4. Two non-interacting Riemann problems

As in Lemma G.2, we will show up
n+

1

2
;�2Uad by showing up

n+
1

2
;�
=u~p

n+
1

2
;�
. Applying

Lemma G.1 to the two non-interacting Riemann problems, we get

u~p
n+

1

2
;�

=
1

�xp

0@Z
x
p¡1

2

xp

uh
�
x;
�t
2

�
dx+

Z
xp

x
p+

1

2uh
�
x;
�t
2

�
dx

1A
=

1
�xp

266664
xp¡ xp¡ 1

2

2
up
n;++

�xp
2

up
�;�+

xp+ 1

2

¡xp
2

up
n;¡

¡�t
2
(f(up

n;¡)¡ f(upn;+))

377775
=

1
2
(�+up

n;++up
�;�+ �¡up

n;¡)¡ �t/2
�xp

(f(up
n;¡)¡ f(upn;+))

= up
n+

1

2
;�
; by (G.18)

This proves our claim. �

For conservative reconstruction,

�¡up
n;¡+ �+up

n;+=up
n

and thus by (G.16), up
�;�=up

n. The previous lemma can thus be specialized as follows.

Lemma G.5. Assume that upn2Uad and up
n;�2Uad for all p with conservative recon-

struction. Also assume the CFL restrictions

max
p

�t
�¡�xp

�(up
n;up

n;¡)� 1; max
p

�t
�+�xp

�(up
n;+;up

n)� 1 (G.19)
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where �� are defined in (G.7). Then, up
n+

1

2
;�
defined in (G.11) is in Uad.

Combining Lemmas G.2, G.3, G.5, we obtain the final criterion for admissibility
preservation of MUSCL-Hancock with conservative reconstruction in the following
Theorem G.6.

Theorem G.6. Let upn 2 Uad for all p and up
n;� be the conservative reconstructions

defined as

up
n;+=up

n+(xp+ 1

2

¡xp) �p; up
n;¡=up

n+(xp¡ 1

2

¡xp) �p

so that up
�;� defined in (G.9) is also given by

up
�;�=up

n+2 (xp� 1

2

¡xp) �p (G.20)

Assume that the slope �p is chosen such that up
�;�2Uad and the CFL restrictions (G.10,

G.13, G.19) hold. Then, the updated solution up
n+1, defined by MUSCL-Hancock

scheme (G.6) is in Uad.

Proof. Once we obtain up
n;�2Uad, the claim follows from Lemmas G.2-G.5. To prove

that up
n;� is indeed in Uad, we make the straight forward observation that

up
n;�=

1
2
up
�;�+

1
2
up
n

Since up
�;� and upn are in Uad, the proof is completed by the convex property of Uad. �

Remark G.7. The strictest time step restriction for admissibility of the MUSCL-
Hancock scheme is imposed by (G.13). Thus, we can find the CFL coefficient for grid
used by subcell-based blending scheme (5.8) by minimizing the denominator in (G.13)
which is given by

1
2

min
p=0; : : : ;N

 
�p¡

X
k=0

p¡1

wk

!
wp=

1
2
�0w0

where �0; w0 are the first Gauss-Legendre quadrature point (3.2) and weight in [0; 1].
This coefficient is less than half of the optimal CFL coefficient that arises from Fourier
stability analysis of the LWFR scheme with D2 dissipation, see Table 4.1.

G.5. Non-conservative reconstruction

To maintain the simple admissibility criterion (Theorem G.6), we have restricted our-
selves to conservative reconstruction in this work. In this section, we explain the
complexities that will arise in enforcing admissibility if we perform reconstruction with
non-conservative variables v defined by the change of variables formula

v=�(u)
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The linear approximation is given by

rp
n(x)=vp

n+(x¡xp) �p; x2 [xp¡ 1

2

; xp+ 1

2

]

and thus the trace values are

vp
n;�=vp

n+(xp� 1

2

¡xp) �p

Since the arguments of proof of admissibility depend on constraints on the conserva-
tive variables, we have to take the inverse map on our reconstructions. For example,
conservative variables at the face are obtained as

up
n;�=�¡1(vp

n;�) (G.21)

Due to the non-linearity of the map �, unlike the conservative case, we have

�¡up
n;¡+ �+up

n;+=/ up
n

which is why several reductions of admissibility constraints will fail. The admissibility
criteria for non-conservative reconstruction is stated in Theorem G.8.

Theorem G.8. Assume that upn2Uad for all p. Consider up
n;� defined in (G.21), up

�;�

defined in (G.9) and up
�;� defined so that

�¡
2
up
n;¡+

1
2
up
�;�+

�+
2
up
n;+=2up

n¡ (�¡upn;¡+ �+up
n;+)

Assume that the slope �p is chosen so that up
n;�;up

�;�;up
�;�2Uad and that the CFL restric-

tions (G.10, G.13, G.17) are satisfied. Then the updated solution up
n+1 of MUSCL-

Hancock scheme (G.6) is in Uad.

Remark G.9. In the case of conservative reconstruction, we propose a simple and
problem independent slope limiter to enforce the conditions for Theorem G.6 in Sec-
tion 5.4.1. However, such a procedure cannot be used for nonconservative reconstruction
because the slope has a nonlinear relation with the conservative variables (G.21).
Thus, a problem dependent procedure similar to Section 5 of [26] will have to be
developed for the non-cell centred grids.

G.6. MUSCL-Hancock scheme in 2-D

Consider the 2-D hyperbolic conservation law (G.1) with fluxes f ; g. For simplicity,
assume that the reconstruction is performed on conservative variables. Thus, the linear
reconstructions are given by

rpq
n (x; y)=upq

n +(x¡xp) �px+(y¡ yq) �qy

and the approximations at the face un;+x;un;¡x;un;+y;un;¡y are

upq
n;�x = rpq

n (xp� 1

2

; yq)=upq
n +(xp� 1

2

¡xp) �px

upq
n;�y = rpq

n (xp; yq� 1

2

)=upq
n +(yq� 1

2

¡ yq) �qy
(G.22)
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and the derivative approximations are given by

@xfpq :=
1

�xp
(f(upq

n;+x)¡ f(upqn;¡x)); @y gpq :=
1
�yq

(g(upq
n;+y)¡ g(upqn;¡y))

@tupq
n :=¡@xfpq¡ @ygpq

The evolutions to time level n+ 1

2
are given by

upq
n+

1

2
;�x

=upq
n;�x+

�t
2
@tupq

n ; upq
n+

1

2
;�y

=upq
n;�y+

�t
2
@tupq

n (G.23)

and then the final update is performed as

upq
n+1=upq

n ¡ �t
�xp

(f
p+

1

2
;q

n+
1

2 ¡ f
p¡ 1

2
;q

n+
1

2 )¡ �t
�yq

(g
p;q+

1

2

n+
1

2 ¡ g
p;q¡ 1

2

n+
1

2 ) (G.24)

where the numerical fluxes are computed as

f
p+

1

2
;q

n+
1

2 = f(upq
n+

1

2
;+x
;up+1;q

n+
1

2
;¡x
); g

p;q+
1

2

n+
1

2 = g(upq
n+

1

2
;+y

;up;q+1
n+

1

2
;¡y
)

G.6.1. First evolution step

As in 1-D, define upq
�;�x;upq

�;�y so that

�+xun;+x+upq
�;�x+ �¡xupq

n;¡x = 2upq
n;�x

�+yupq
n;+y+upq

�;�y+ �¡yupq
n;¡y = 2upq

n;�y (G.25)

where

�+x =
xp¡xp¡ 1

2

xp+ 1

2

¡xp¡ 1

2

; �¡x=
xp+ 1

2

¡xp
xp+ 1

2

¡xp¡ 1

2

�+y =
yq¡ yq¡ 1

2

yq+ 1

2

¡ yq¡ 1

2

; �¡y=
yq+ 1

2

¡ yq
yq+ 1

2

¡ yq¡ 1

2

(G.26)

Since we assume conservative reconstruction

�+xupq
n;+x+ �¡xupq

n;¡x= �+yupq
n;+y+ �¡yupq

n;¡y=upq
n

Thus, we have

upq
�;�x=upq+2 (xp� 1

2

¡xp) �px; upq
�;�y=upq+2 (yq� 1

2

¡xq) �qy

We will particularly discuss admissibility of the updates

upq
n+

1

2
;+x

=upq
n;+x¡�t/2

�xp
(f(upq

n;+x)¡f(upqn;¡x))¡
�t/2
�yq

(g(upq
n;+y)¡g(upqn;¡y)) (G.27)

Admissibility of the other three updates upq
n+

1

2
;¡x
; upq

n+
1

2
;�y

will follow similarly. For
some kx; ky chosen such that kx+ ky=1, we write (G.27) as

upq
n+

1

2
;+x

= kx�pq
+x+ ky�pq

+y
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where

�pq
+x :=upq

n;+x¡ �t/2
kx�xp

(f(upq
n;+x)¡ f(upqn;¡x)) (G.28)

and

�pq
+y :=upq

n;+x¡ �t/2
ky�yq

(g(upq
n;+y)¡ g(upqn;¡y)) (G.29)

We will choose the slopes �px;�q
y and time step �t so that �pq

+x;�pq
+y2Uad. Then, we can

take convex combinations of the two terms to obtain admissibility of upq
n+

1

2
;+x

.

Remark G.10. The choice of kx; ky will not influence the slope restriction, but only
the time step restriction required to obtain admissibility. In this work, for Cartesian
meshes, we compute the time step size using (4.30) with CFL number dictated by
Fourier stability analysis (Table 4.1). With this restriction, we observe admissibility
preservation in all our numerical experiments even with the trivial choice of kx= ky=
1/2. Thus, we do not study the choice of kx; ky in this work. However, in a similar
context, [205] proposed the choice of

kx=
ax/�xp

ax/�xp+ ay/�yq
; ky=

ay/�yq
ax/�xp+ ay/�yq

(G.30)

where

ax=�x(upq
n;¡x;upq

n;+x); ay=�y(upq
n;¡y;upq

n;+y)

In [56], it was shown that the time step restriction imposed by the above decomposition
is suboptimal and optimal decompositions were proposed.

After choosing kx;ky (Remark G.10), following the 1-D procedures from Section G.4,
the slopes �px; �q

y will be limited to enforce admissibility of �pq
+x; �pq

+y (G.28, G.29).
The admissibility preservation of �pq

+x (G.28) follows directly from the arguments used
in Lemma G.2, enforcing slope restriction so that upq

n;�x and upq
�;+x are admissible,

and appropriate time step restrictions. For admissibility of �pq
+y (G.29), we define

upq
�;+xy so that

�+yupq
n;+y+upq

�;+xy+ �¡yupq
n;¡y=2upq

n;+x

Thus, the proof of Lemma G.2 shall apply as in 1-D under the assumption of admis-
sibility of upq

n;�y;upq
�;+xy and some CFL conditions. Thus, we will have admissibility of

�pq
+y2Uad. We obtain further simplifications because of conservative reconstructions

upq
�;+xy=upq

�;+x

and thus the slope limiting for enforcing admissibility of upq
�;+x will suffice. We note

the precise slope and CFL restrictions are in Lemma G.11.

Lemma G.11. For ��x; ��y defined in (G.26), upq
n;�x;upq

n;�y reconstructed in (G.22),
upq
�;�x;upq

�;�y picked as in (G.25), assume

upq
n;�x;upq

n;�y;upq
�;�x;upq

�;�y2Uad
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and the CFL restrictions

max
p;q

�xp
�¡x

�x(upq
n;¡x;upq

�;�x)� 1; max
p;q

�xp
�+x

�x(upq
�;�x;un;+x)� 1

max
p;q

�yq
�¡y

�y(upq
n;¡y;upq

�;�x)� 1; max
p;q

�yq
�+y

�y(upq
�;�x;un;+y)� 1

max
p;q

�yq
�¡y

�y(upq
n;¡y;upq

�;�y)� 1; max
p;q

�yq
�+y

�y(upq
�;�y;upq

n;+y)� 1

max
p;q

�xp
�¡x

�x(upq
n;¡x;upq

�;�y)� 1; max
p;q

�xp
�+x

�x(upq
�;�y;upq

n;+x)� 1

(G.31)

where �xp=
�t

kx�xp
; �yq=

�t

ky�yq
for all p; q and kx+ ky=1. Then, the updates upq

n+
1

2
;�x
;

upq
n+

1

2
;�y

(G.27) of the first step of 2-D MUSCL-Hancock scheme are admissible.

G.6.2. Finite volume step

The final update is given by

upq
n+1=upq

n ¡ �t
�xp

(f
p+

1

2
;q

n+
1

2 ¡ f
p¡ 1

2
;q

n+
1

2 )¡ �t
�yq

(g
p;q+

1

2

n+
1

2 ¡ g
p;q¡ 1

2

n+
1

2 ) (G.32)

where the numerical fluxes are computed as

f
p+

1

2
;q

n+
1

2 = f
�
upq
n+

1

2
;+x
;up+1;q

n+
1

2
;¡x
�
; g

p;q+
1

2

n+
1

2 = g
�
upq
n+

1

2
;+y

;up;q+1
n+

1

2
;¡y
�

As in the previous step, the expression (G.32) is split into a convex combination

upq
n+1= kx �pq

x + ky �pq
y

where

�pq
x :=upq

n ¡ �t
kx�xp

(f
p+

1

2
;q

n+
1

2 ¡ f
p¡ 1

2
;q

n+
1

2 ); �pq
y :=upq

n ¡ �t
ky�yq

(g
p;q+

1

2

n+
1

2 ¡ g
p;q¡ 1

2

n+
1

2 )

for some kx; ky � 0 with kx+ ky= 1. The admissibility of �pqx and �pq
y will imply the

admissibility of un+1. The admissibility of �pqx ; �pq
y will follow exactly as from the

procedure in 1-D (Lemma G.3) with appropriate time step restrictions and assumption

of admissibility of terms upq
n+

1

2
;�x
;upq

n+
1

2
;�y

;upq
n+

1

2
;�x
;upq

n+
1

2
;�y

for upq
n+

1

2
;�x
;upq

n+
1

2
;�y

defined
as

�¡xupq
n+

1

2
;¡x

+upq
n+

1

2
;�x
+ �+xupq

n+
1

2
;+x

= 2upq
n

�¡yupq
n+

1

2
;¡y

+upq
n+

1

2
;�y
+ �+yupq

n+
1

2
;+y

= 2upq
n

The precise CFL restrictions and admissibility constraints are in the following
Lemma G.12.
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Lemma G.12. Assume that the states
n
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;�x
;upq
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2
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2
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n+
1

2
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are defined as in (G.32). Then, the updated solution upq
n+1

of MUSCL-Hancock scheme is in Uad under the CFL conditions
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(G.33)

where �xp=
�t

kx�xp
; �yq=

�t

ky�yq
for all p; q.

As in 1-D, we now show that admissibility of upq
n+

1

2
;�x
;upq

n+
1

2
;�y

can also be reduced
to admissibility of upq

�;�x; upq
�;�y, similar to Lemma G.5. Expanding the definition of

upq
n+

1

2
;�y

gives us

upq
n+

1

2
;�y

= 2upq
n ¡ (�¡yupqn;¡y+ �+yupq

n;+y)¡ �t
�xp

(f(upq
n;¡x)¡ f(upqn;+x))

¡ �t
�yq

(g(upq
n;¡y)¡ g(upqn;+y))

If we obtain the admissibility of

�pq
�yx := 2upq

n ¡ (�¡yupqn;¡y+ �+yupq
n;+y)¡ �t

kx�xp
(f(upq

n;¡x)¡ f(upqn;+x)) (G.34)

and

�pq
�yy := 2upq

n ¡ (�¡yupqn;¡y+ �+yupq
n;+y)¡ �t

ky�yq
(g(upq

n;¡y)¡ g(upqn;+y)) (G.35)

for some kx; ky2 [0; 1] with kx+ ky=1, then the admissibility of upq
n+

1

2
;�y

follows as we
can write it as a convex combination

upq
n+

1

2
;�y
= kx�pq

�yx+ ky�pq
�yx
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and obtain the admissibility of upq
n+

1

2
;�y

. Thus, we need to limit the slope so that (G.34,
G.35) are admissible. To that end, define upq

��yx;upq
��yy to satisfy

�¡xupq
n;¡x+upq
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Then, assuming the admissibility of upq
��yx; upq

��yy and proceeding as in the proof of

Lemma G.4, we can ensure that �pq
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�yy2Uad and thus upq
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2
;�y2Uad. Furthermore,

since the reconstruction is conservative
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n;¡y+ �+yupq

n;+y= �¡xupq
n;¡x+ �+xupq

n;+x=upq
n

Thus, admissibility of upq
��yx;upq

��yy is obtained as

upq
��yx=upq

��yy=upq
n

The arguments for admissibility of upq
n+

1

2
;�x

are similar. The admissibility criteria of

upq
n+

1

2
;�x
;upq

n+
1

2
;�y

are summarised in the following lemma.

Lemma G.13. Assume that upqn 2Uad and upq
n;�x;upq

n;�y2Uad for all p; q with conserv-
ative reconstruction. Also assume the CFL restrictions

max
p;q

�xp
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�+x
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(G.36)

where �xp =
�t

kx�xp
; �yq =

�t

ky�yq
and ��x; ��y are defined in (G.26). Then, upq

n+
1

2
;�x
;

upq
n+

1

2
;�y

defined in (G.32) are in Uad.

Combining Lemmas G.11, G.12, G.13, we will have the 2-D result corresponding
to Theorem G.6 with the same proof.

Theorem G.14. Let upqn 2Uad for all p; q and upq
n;�x;upq

n;�y be the conservative recon-
structions defined as

upq
n;�x=upq

n +(xp� 1

2

¡ xp) �px; upq
n;�y=upq

n +(yq� 1

2

¡ yq) �qy

so that upq
�;�x;upq

�;�y (G.25) are given by

upq
�;�x=upq

n +2 (xp� 1

2

¡ xp) �px; upq
�;�y=upq

n +2 (yq� 1

2

¡ yq) �qy

Assume that the slopes �px; �q
y are chosen to satisfy upq

�;�x;upq
�;�y 2Uad for all p; q and

that the CFL restrictions (G.31, G.33, G.36) are satisfied. Then the updated solution
upq
n+1 of MUSCL-Hancock procedure is in Uad.
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Appendix H

Limiting numerical flux in 2-D

Consider the 2-D hyperbolic conservation law (G.1). Following Section 4.9, the Lax-
Wendroff update is

(upq
e )n+1=(upq

e )n¡�t
�

1
�xe

@Fh
e

@�
(�p; �q)+

1
�ye

@Gh
e

@�
(�p; �q)

�
; 0� p; q �N

where Fhe;Gh
e are continuous time-averaged fluxes (4.8) in the x; y directions for the

grid element e=(ex; ey). Since the 2-D scheme is formed by taking a tensor product of
the 1-D scheme, Theorem 5.5 applies, i.e., the scheme will be admissibility preserving
in means (Definition 5.2) if we choose the blended numerical flux such that the lower
order updates are admissible at solution points adjacent to the interfaces. Thus, we
now explain the process of constructing the numerical flux where, to minimize storage
requirements and memory reads, we will perform the correction within the interface
loop where only one of x or y flux will be available in one iteration. Thus theoretical
justification for the algorithm comes from breaking 2-D lower order updates into 1-D
convex combinations. The general structure of the LWFR Algorithm 5.2 will remain the
same. Here, we justify Algorithm H.1 for construction of blended x flux with knowledge
of only the x flux. The algorithm for blended y fluxes will be analogous.

We consider the calculation of the blended numerical flux for a corner solution
point of the element, as this situation differs from 1-D, due to the fact that a corner
solution point is adjacent to both x and y interfaces. In particular, we consider the
bottom-left corner point 0= (0; 0) and show that the procedure in Algorithm H.1
ensures admissibility at such points. The same justification applies to other corner and
non-corner points. For the element e=(ex; ey), denoting interfaces along x; y directions
as (ex�1

2
; ey), (ex; ey � 1

2
), we consider the update at the bottom left corner 0= (0;

0), suppressing the local solution point index p=0 or q=0 when considering the FR
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interface fluxes. The lower order update is given by
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where F
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2
;ey)
;G

�

(ex;ey¡ 1

2
) are heuristically guessed candidates for the blended numer-

ical flux (5.11). Pick kx; ky> 0 such that kx+ ky=1 and
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(H.1)

satisfy

u
�

x
low;n+1;u

�

y
low;n+12Uad (H.2)

Such kx; ky exist because the lower order scheme with lower order flux at element
interfaces is admissibility preserving. The choice of kx; ky should be made so that (H.2)
is satisfied with the least time step restriction, but we have found the Fourier stability
restriction imposed by (4.30) to be sufficient even with the most trivial choice of
kx= ky=

1

2
. The discussion of literature for the optimal choice of kx; ky is the same as

the one made for the 2-D MUSCL Hancock scheme (G.30) and is not repeated here.
After the choice of kx; ky is made, if we repeat the same procedure as in the 1-D case,
we can perform slope limiting to find Fex¡ 1

2
;ey
, Fex;ey¡ 1

2

such that

u
�

x
n+1 = ue;0

n ¡ �t
kx�xew0
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are also in the admissible region. Then, we will get

kxu
�

x
n+1+ kyu

�

y
n+1=u

�

0
n+1 (H.3)

We now justify Algorithm H.1 as follows. Algorithm H.1 corrects the numerical fluxes
during the loop over x interfaces to enforce admissibility of u

�

x
n+1 (H.2) at all solution

points neighbouring x interfaces including the corner solution points, and the analogous
algorithm for y interfaces will ensure admissibility of u

�

y
n+1 (H.2) at all solution points

neighbouring y interfaces including the corner points. At the end of the loop over
interfaces, (H.3) will ensure that lower order updates at all solutions points neigh-
bouring interfaces are admissible and Algorithm 5.2 will be an admissibility preserving
Lax-Wendroff scheme for 2-D if we compute the blended numerical fluxes F(ex+ 1

2
;ey)
;

F(ex;ey+ 1

2
) using Algorithm H.1 and its counterpart in the y direction.
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Algorithm H.1

Computation of blended flux Fex+ 1
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;ey;q
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Appendix I

Formal accuracy of multi-derivative RK

We consider the system of time dependent equations

ut=L(u)

which relates to the hyperbolic conservation law (3.1) by formally setting L=¡f(u)x.
Consider a two stage method of the following form.

u� = un+�t a21L(un)+�t2 â21Lt(u
n)

un+1 = un+�t (b1L(un)+ b2L(u�))+�t2 (b̂1 @tL+ b̂2 @tL(u�))
(I.1)

Further note that, we use the Approximate Lax-Wendroff (Section 7.2.3) to approxi-
mate @tL(un); @tL(u�) to O(�t3) accuracy and thus we perform an error analysis of
an evolution performed as

u�=un+�t a21L(un)+�t2 â21Lt(u
n)+O(�t5)

un+1=un+�t (b1L(u
n)+ b2L(u

�))+�t2 (b̂1 @tL+ b̂2 @tL(u
�))+O(�t5) (I.2)

Now, note that

utt=Luut=LuL; uttt=Luuut
2+Luutt=LuuL

2+Lu
2 L

utttt=Luuuut
3+3Luuututt+Luuttt=LuuuL

3+4LuuLuL
2+Lu

3 L
(I.3)

Starting from u=un, the exact solution satisfies

un+1=u+�tut+
�t2

2
utt+

�t3

6
uttt+

�t4

24
utttt+O(�t5) (I.4)

We note the following identities

@tL(u)=Luut

u�=u+�t a21L+�t2 â21LuL+O(�t5)

L(u�)=L+Lu(u
�¡u)+ 1

2
Luu (u

�¡u)2+ 1
6
Luuu (u

�¡u)3+O(�t4)

Lu(u
�)=Lu+Luu (u

�¡u)+ 1
2
Luuu (u

�¡u)2+O(�t3)

@tL(u�)=Lu(u
�)L(u�)

Now we will substitute these four equations into (I.2) and use (I.3) to obtain the update
equation in terms of temporal derivatives on u. Then, we compare with the Taylor's
expansion of u (I.4) to get conditions for the respective orders of accuracy
First order:

b1+ b2=1 (I.5)
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Second order:

b2 a21+ b̂1+ b̂2=
1
2

(I.6)

Third order:

b2 a21
2 +2 b̂2 a21 =

1
3

(I.7)

b2 â21+ b̂2 a21 =
1
6

(I.8)

Fourth order:

b2 a21
3 +3 b̂2 a21
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1
4

(I.9)

b2 a21 â21+ b̂2 a21
2 + b̂2 â21 =

1
8

(I.10)

b̂2 a21
2 =

1
12

(I.11)

b̂2 â21 =
1
24

(I.12)

From (I.11), (I.12) we get

â21=
1
2
a21
2 (I.13)

We then see that equations (I.7), (I.8) become identical, and equations (I.9), (I.10)
become identical. Simplifying the above equations, we get five equations for the five
unknown coefficients.

b1+ b2 = 1 (I.14)

b2 a21+ b̂1+ b̂2 =
1
2

(I.15)

b2 a21
2 +2 b̂2 a21 =

1
3

(I.16)

b2 a21
3 +3 b̂2 a21

2 =
1
4

(I.17)

b̂2 a21
2 =

1
12

(I.18)

Using (I.18) in (I.17) we get

b2 a21
3 =0

The solution a21=0 does not satisfy (I.16), (I.17), hence let us choose

b2=0

Then we get the unique solution for the coefficients

b1=1; b2=0; b̂1=
1
6
; b̂2=

1
3
; a21=

1
2
; â21=

1
8

These coefficients do give the scheme (7.5) for which the two stage method is fourth
order accurate.
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